Latent Space-Based Likelihood Estimation Using a Single Observation for Bayesian Updating of a Nonlinear Hysteretic Model
被引:0
作者:
Lee, Sangwon
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Engn, Dept Architecture, Tokyo 1138656, JapanUniv Tokyo, Grad Sch Engn, Dept Architecture, Tokyo 1138656, Japan
Lee, Sangwon
[1
]
Yaoyama, Taro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Engn, Dept Architecture, Tokyo 1138656, JapanUniv Tokyo, Grad Sch Engn, Dept Architecture, Tokyo 1138656, Japan
Yaoyama, Taro
[1
]
Matsumoto, Yuma
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Engn, Dept Architecture, Tokyo 1138656, JapanUniv Tokyo, Grad Sch Engn, Dept Architecture, Tokyo 1138656, Japan
Matsumoto, Yuma
[1
]
Hida, Takenori
论文数: 0引用数: 0
h-index: 0
机构:
Ibaraki Univ, Grad Sch Sci & Engn, Civil Engn, Ibaraki 3168511, JapanUniv Tokyo, Grad Sch Engn, Dept Architecture, Tokyo 1138656, Japan
Hida, Takenori
[2
]
Itoi, Tatsuya
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Engn, Dept Architecture, Tokyo 1138656, JapanUniv Tokyo, Grad Sch Engn, Dept Architecture, Tokyo 1138656, Japan
Itoi, Tatsuya
[1
]
机构:
[1] Univ Tokyo, Grad Sch Engn, Dept Architecture, Tokyo 1138656, Japan
[2] Ibaraki Univ, Grad Sch Sci & Engn, Civil Engn, Ibaraki 3168511, Japan
来源:
ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING
|
2024年
/
10卷
/
04期
关键词:
IDENTIFICATION;
D O I:
10.1061/AJRUA6.RUENG-1305
中图分类号:
TU [建筑科学];
学科分类号:
0813 ;
摘要:
This study presents a novel approach to quantify uncertainties in Bayesian model updating, which is effective for sparse or single observations. Conventional uncertainty quantification methods are limited in situations with insufficient data, particularly for nonlinear responses like postyield behavior. Our method addresses this challenge using the latent space of a variational autoencoder (VAE), a generative model that enables nonparametric likelihood evaluation. This approach is valuable in updating model parameters based on nonlinear seismic responses of a structure, wherein data scarcity is a common challenge. Our numerical experiments confirmed the ability of the proposed method to accurately update parameters and quantify uncertainties using a single observation. Additionally, the numerical experiments revealed that increased information about nonlinear behavior tends to result in decreased uncertainty in terms of estimations. This study provides a robust tool for quantifying uncertainty in scenarios characterized by considerable uncertainty, thereby expanding the applicability of approximate Bayesian updating methods in data-constrained environments.