Cross-Layer Connection SegFormer Attention U-Net for Efficient TRUS Image Segmentation

被引:0
作者
Shi, Yongtao [1 ,2 ]
Du, Wei [1 ,2 ]
Gao, Chao [1 ,2 ]
Li, Xinzhi [3 ,4 ]
机构
[1] China Three Gorges Univ, Coll Comp & Informat Technol, Yichang, Hubei, Peoples R China
[2] China Three Gorges Univ, Hubei Key Lab Intelligent Visual Monitoring Hydroe, Yichang, Hubei, Peoples R China
[3] China Three Gorges Univ, Coll Med & Hlth Sci, Yichang, Hubei, Peoples R China
[4] China Three Gorges Univ, Dept Orthoped, Affiliated Renhe Hosp, Yichang, Hubei, Peoples R China
关键词
deep learning; medical image segmentation; prostate ultrasound images; PROSTATE-CANCER; BIOPSY; DIAGNOSIS;
D O I
10.1002/ima.23178
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurately and rapidly segmenting the prostate in transrectal ultrasound (TRUS) images remains challenging due to the complex semantic information in ultrasound images. The paper discusses a cross-layer connection with SegFormer attention U-Net for efficient TRUS image segmentation. The SegFormer framework is enhanced by reducing model parameters and complexity without sacrificing accuracy. We introduce layer-skipping connections for precise positioning and combine local context with global dependency for superior feature recognition. The decoder is improved with Multi-layer Perceptual Convolutional Block Attention Module (MCBAM) for better upsampling and reduced information loss, leading to increased accuracy. The experimental results show that compared with classic or popular deep learning methods, this method has better segmentation performance, with the dice similarity coefficient (DSC) of 97.55% and the intersection over union (IoU) of 95.23%. This approach balances encoder efficiency, multi-layer information flow, and parameter reduction.
引用
收藏
页数:13
相关论文
共 32 条
  • [1] Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study
    Ahmed, Hashim U.
    Bosaily, Ahmed El-Shater
    Brown, Louise C.
    Gabe, Rhian
    Kaplan, Richard
    Parmar, Mahesh K.
    Collaco-Moraes, Yolanda
    Ward, Katie
    Hindley, Richard G.
    Freeman, Alex
    Kirkham, Alex P.
    Oldroyd, Robert
    Parker, Chris
    Emberton, Mark
    [J]. LANCET, 2017, 389 (10071) : 815 - 822
  • [2] Detection of prostate cancer using temporal sequences of ultrasound data: a large clinical feasibility study
    Azizi, Shekoofeh
    Imani, Farhad
    Ghavidel, Sahar
    Tahmasebi, Amir
    Kwak, Jin Tae
    Xu, Sheng
    Turkbey, Baris
    Choyke, Peter
    Pinto, Peter
    Wood, Bradford
    Mousavi, Parvin
    Abolmaesumi, Purang
    [J]. INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2016, 11 (06) : 947 - 956
  • [3] Bejnordi B. E., 2017, arXiv
  • [4] Fast and accurate segmentation method of active shape model with Rayleigh mixture model clustering for prostate ultrasound images
    Bi, Hui
    Jiang, Yibo
    Tang, Hui
    Yang, Guanyu
    Shu, Huazhong
    Dillenseger, Jean-Louis
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 184 (184)
  • [5] TRUS Biopsy vs Transperineal Biopsy for Suspicion of Prostate Cancer
    Chiu, Peter K. F.
    Ahmed, Hashim U.
    Rastinehad, Ardeshir R.
    [J]. UROLOGY, 2022, 164 : 18 - 20
  • [6] The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository
    Clark, Kenneth
    Vendt, Bruce
    Smith, Kirk
    Freymann, John
    Kirby, Justin
    Koppel, Paul
    Moore, Stephen
    Phillips, Stanley
    Maffitt, David
    Pringle, Michael
    Tarbox, Lawrence
    Prior, Fred
    [J]. JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) : 1045 - 1057
  • [7] Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
  • [8] A lightweight smart contracts framework for blockchain-based secure communication in smart grid applications
    Faheem, Muhammad
    Kuusniemi, Heidi
    Eltahawy, Bahaa
    Bhutta, Muhammad Shoaib
    Raza, Basit
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2024, 18 (03) : 625 - 638
  • [9] Analysis of Discrepancy Metrics Used in Medical Image Segmentation
    Garcia, V.
    Dominguez, H. J. O.
    Mederos, B.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (01) : 235 - 240
  • [10] Huang HM, 2020, INT CONF ACOUST SPEE, P1055, DOI [10.1109/icassp40776.2020.9053405, 10.1109/ICASSP40776.2020.9053405]