Single-step synthesis of shaped polymeric particles using initiated chemical vapor deposition in liquid crystals

被引:1
作者
Jain, Apoorva [1 ]
Pal, Soumyamouli [1 ]
Li, Shiqi [1 ]
Abbott, Nicholas L. [1 ]
Yang, Rong [1 ]
机构
[1] Cornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, Ithaca, NY 14850 USA
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 45期
关键词
POLY(DIVINYLBENZENE) MICROSPHERES; CROSS-LINKING; NONSPHERICAL PARTICLES; SOLUBILITY PARAMETERS; MONODISPERSE; MORPHOLOGY; FILMS; NANOPARTICLES; POLYSTYRENE; NETWORKS;
D O I
10.1126/sciadv.adp5573
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We elucidate a previously unknown synthesis pathway that leads to polymeric nanospheres, orientation-controlled microgels, or microspheroids via single-step polymerization of divinylbenzene (DVB) using initiated chemical vapor deposition (iCVD) in liquid crystals (LC). iCVD supplies vapor-phase reactants continuously, avoiding the critical limitation of reactant-induced disruption of LC structure that has plagued past LC-templated polymerization processes. LC is leveraged as a real-time display of the polymerization conditions and particle emergence, captured using an in situ long-focal range microscope. Detailed image analysis unravels key LC-guided mechanisms during polymerization. pDVB forms nanospheres due to poor solubilization by nematic LC. The nanospheres partition to the LC-solid interface and further assemble into microgel clusters whose orientation is guided by the LC molecular alignment. On further polymerization, microgel clusters transition to microspheroids that resemble liquid drops. We identify key energetic factors that guide trajectories along the synthesis pathway, providing the fundamental basis of a framework for engineering particle synthesis with shape control.
引用
收藏
页数:13
相关论文
共 79 条
  • [1] Helical Polyacetylene: Asymmetric Polymerization in a Chiral Liquid-Crystal Field
    Akagi, Kazuo
    [J]. CHEMICAL REVIEWS, 2009, 109 (11) : 5354 - 5401
  • [2] Nanoparticles in the clinic
    Anselmo, Aaron C.
    Mitragotri, Samir
    [J]. BIOENGINEERING & TRANSLATIONAL MEDICINE, 2016, 1 (01) : 10 - 29
  • [3] Solubility parameters of liquid crystals
    Araya, K
    Iwasaki, K
    [J]. MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2002, 392 : 49 - 57
  • [4] Polarized infrared and raman spectroscopy studies of the liquid crystal E7 alignment in composites based on grooved silicon
    Astrova, EV
    Perova, TS
    Grudinkin, SA
    Tolmachev, VA
    Pilyugina, YA
    Voronkov, VB
    Vij, JK
    [J]. SEMICONDUCTORS, 2005, 39 (07) : 759 - 767
  • [5] Principles of nanoparticle design for overcoming biological barriers to drug delivery
    Blanco, Elvin
    Shen, Haifa
    Ferrari, Mauro
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (09) : 941 - 951
  • [6] Initiated CVD of Poly(2-Hydroxyethyl Methacrylate) Hydrogels: Synthesis, Characterization and In-vitro Biocompatibility
    Bose, Ranjita K.
    Lau, Kenneth K. S.
    [J]. CHEMICAL VAPOR DEPOSITION, 2009, 15 (4-6) : 150 - 155
  • [7] Phase behaviour and electro-optical response of systems composed of nematic liquid crystals and poly (2-ethylhexylacrylate)
    Bouriche, Amina
    Alachaher, Lamia Bedjaoui
    Maschke, Ulrich
    [J]. LIQUID CRYSTALS, 2018, 45 (05) : 656 - 665
  • [8] Microstructured Films Formed on Liquid Substrates via Initiated Chemical Vapor Deposition of Cross-Linked Polymers
    Bradley, Laura C.
    Gupta, Malancha
    [J]. LANGMUIR, 2015, 31 (29) : 7999 - 8005
  • [9] Formation of Heterogeneous Polymer Films via Simultaneous or Sequential Depositions of Soluble and Insoluble Monomers onto Ionic Liquids
    Bradley, Laura C.
    Gupta, Malancha
    [J]. LANGMUIR, 2013, 29 (33) : 10448 - 10454
  • [10] Encapsulation of Ionic Liquids within Polymer Shells via Vapor Phase Deposition
    Bradley, Laura C.
    Gupta, Malancha
    [J]. LANGMUIR, 2012, 28 (27) : 10276 - 10280