Remote Sensing-Based Drought Monitoring in Iran's Sistan and Balouchestan Province

被引:1
|
作者
Omidvar, Kamal [1 ]
Nabavizadeh, Masoume [1 ]
Rousta, Iman [1 ,2 ,3 ]
Olafsson, Haraldur [2 ,3 ]
机构
[1] Yazd Univ, Dept Geog, Yazd 891581841, Iran
[2] Univ Iceland, Inst Atmospher Sci Weather & Climate, Dept Phys, Bustadavegur 7, IS-108 Reykjavik, Iceland
[3] Iceland Meteorol Off IMO, Bustadavegur 7, IS-108 Reykjavik, Iceland
关键词
vegetation drought indices; TSDI index; GLDAS precipitation data; climate change; groundwater; Sistan and Balouchestan Province; AGRICULTURAL DROUGHT; SATELLITE-OBSERVATIONS; VEGETATION DYNAMICS; SOIL-MOISTURE; RIVER-BASIN; INDEX; WATER; TEMPERATURE; LAND; SPACE;
D O I
10.3390/atmos15101211
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Drought is a natural phenomenon that has adverse effects on agriculture, the economy, and human well-being. The primary objective of this research was to comprehensively understand the drought conditions in Sistan and Balouchestan Province from 2002 to 2017 from two perspectives: vegetation cover and hydrology. To achieve this goal, the study utilized MODIS satellite data in the first part to monitor vegetation cover as an indicator of agricultural drought. In the second part, GRACE satellite data were employed to analyze changes in groundwater resources as an indicator of hydrological drought. To assess vegetation drought, four indices were used: Vegetation Health Index (VHI), Vegetation Drought Index (VDI), Visible Infrared Drought Index (VSDI), and Temperature Vegetation Drought Index (TVDI). To validate vegetation drought indices, they were compared with Global Land Data Assimilation System (GLDAS) precipitation data. The vegetation indices showed a strong, statistically significant correlation with GLDAS precipitation data in most regions of the province. Among all indices, the VHI showed the highest correlation with precipitation (moderate (0.3-0.7) in 51.7% and strong (>= 0.7) in 45.82% of lands). The output of vegetation indices revealed that the study province has experienced widespread drought in recent years. The results showed that the southern and central regions of the province have faced more severe drought classes. In the second part of this research, hydrological drought monitoring was conducted in fifty third-order sub-basins located within the study province using the Total Water Storage (TWS) deficit, Drought Severity, and Total Storage Deficit Index (TSDI Index). Annual average calculations of the TWS deficit over the period from April 2012 to 2016 indicated a substantial depletion of groundwater reserves in the province, amounting to a cumulative loss of 12.2 km3 Analysis results indicate that drought severity continuously increased in all study basins until the end of the study period. Studies have shown that all the studied basins are facing severe and prolonged water scarcity. Among the 50 studied basins, the Rahmatabad basin, located in the semi-arid northern regions of the province, has experienced the most severe drought. This basin has experienced five drought events, particularly one lasting 89 consecutive months and causing a reduction of more than 665.99 km3. of water in month 1, placing it in a critical condition. On the other hand, the Niskoofan Chabahar basin, located in the tropical southern part of the province near the Sea of Oman, has experienced the lowest reduction in water volume with 10 drought events and a decrease of approximately 111.214 km3. in month 1. However, even this basin has not been spared from prolonged droughts. Analysis of drought index graphs across different severity classes confirmed that all watersheds experienced drought conditions, particularly in the later years of this period. Data analysis revealed a severe water crisis in the province. Urgent and coordinated actions are needed to address this challenge. Transitioning to drought-resistant crops, enhancing irrigation efficiency, and securing water rights are essential steps towards a sustainable future.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Meteorological and agricultural drought monitoring in Southwest of Iran using a remote sensing-based combined drought index
    Karimi, Mahshid
    Shahedi, Kaka
    Raziei, Tayeb
    Miryaghoubzadeh, Mirhassan
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (11) : 3707 - 3724
  • [2] Remote Sensing-based Agricultural Drought Monitoring using Hydrometeorological Variables
    Sur, Chanyang
    Park, Seo-Yeon
    Kim, Tae-Woong
    Lee, Joo-Heon
    KSCE JOURNAL OF CIVIL ENGINEERING, 2019, 23 (12) : 5244 - 5256
  • [3] A remote sensing-based method for drought monitoring using the similarity between drought eigenvectors
    Song, Chao
    Yue, Cuiying
    Zhang, Wen
    Zhang, Dongying
    Hong, Zhiming
    Meng, Lingkui
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (23) : 8838 - 8856
  • [4] Remote Sensing-based Agricultural Drought Monitoring using Hydrometeorological Variables
    Chanyang Sur
    Seo-Yeon Park
    Tae-Woong Kim
    Joo-Heon Lee
    KSCE Journal of Civil Engineering, 2019, 23 : 5244 - 5256
  • [5] Developing a Remote Sensing-Based Combined Drought Indicator Approach for Agricultural Drought Monitoring over Marathwada, India
    Kulkarni, Sneha S.
    Wardlow, Brian D.
    Bayissa, Yared A.
    Tadesse, Tsegaye
    Svoboda, Mark D.
    Gedam, Shirishkumar S.
    REMOTE SENSING, 2020, 12 (13)
  • [6] Remote sensing-based drought hazard monitoring and assessment in a coastal plain: A principal component approach
    Jesudhas, Colins Johnny
    Titus, Jeswin C.
    Roy, Tirthankar
    ENVIRONMENTAL RESEARCH, 2024, 243
  • [7] Monitoring Droughts in the Greater Changbai Mountains Using Multiple Remote Sensing-Based Drought Indices
    Han, Yang
    Li, Ziying
    Huang, Chang
    Zhou, Yuyu
    Zong, Shengwei
    Hao, Tianyi
    Niu, Haofang
    Yao, Haiyan
    REMOTE SENSING, 2020, 12 (03)
  • [8] Agricultural drought monitoring and early warning at the regional scale using a remote sensing-based combined index
    Satapathy, Trupti
    Dietrich, Joerg
    Ramadas, Meenu
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (11)
  • [9] Assessment of Spatiotemporal Characteristic of Droughts Using In Situ and Remote Sensing-Based Drought Indices
    Jalayer, Sepideh
    Sharifi, Alireza
    Abbasi-Moghadam, Dariush
    Tariq, Aqil
    Qin, Shujing
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 1483 - 1502
  • [10] Comparative evaluation of drought indices for monitoring drought based on remote sensing data
    Wei, Wei
    Zhang, Jing
    Zhou, Liang
    Xie, Binbin
    Zhou, Junju
    Li, Chuanhua
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (16) : 20408 - 20425