A Study on Machine Learning-Based Feature Classification for the Early Diagnosis of Blade Rubbing

被引:0
|
作者
Park, Dong-hee [1 ]
Choi, Byeong-keun [2 ]
机构
[1] DAVISS Inc, Jinju 52828, South Korea
[2] Gyeongsang Natl Univ, Dept Energy & Mech Engn, Tongyeong 53064, South Korea
关键词
machine learning; feature-based diagnosis; blade rubbing; turbine blade; signal preprocessing; bandpass filter; band reject filter; diagnosis;
D O I
10.3390/s24186013
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This research focuses on the development of a machine learning-based approach for the early diagnosis of blade rubbing in rotary machinery. In this paper, machine learning-based diagnostic methods are used for blade rubbing early diagnosis, and the faults are simulated using experimental models. The experimental conditions were simulated as follows: Excessive rotor vibration is generated by an unbalance mass, and blade rubbing occurs through excessive rotor vibration. Additionally, the severity of blade rubbing was also simulated while increasing the unbalance mass. And then, machine learning-based diagnostic methods were applied and the trends according to the severity of blade rubbing were compared. This paper provides a signal processing method through feature analysis to diagnose blade rubbing conditions in machine learning. It was confirmed that the results of the unbalance and blade rubbing represent different trends, and it is possible to distinguish unbalance from blade rubbing before blade rubbing occurs. The diagnosis using machine learning methods will be applicable to rotating machinery faults like blade rubbing; furthermore, the early diagnosis of blade rubbing will be possible.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Machine learning-based decision support system for orthognathic diagnosis and treatment planning
    Du, Wen
    Bi, Wenjun
    Liu, Yao
    Zhu, Zhaokun
    Tai, Yue
    Luo, En
    BMC ORAL HEALTH, 2024, 24 (01)
  • [42] Machine learning-based approach for online fault Diagnosis of Discrete Event System
    Saddem, R.
    Baptiste, D.
    IFAC PAPERSONLINE, 2022, 55 (28): : 337 - 343
  • [43] Machine learning-based decision support system for orthognathic diagnosis and treatment planning
    Wen Du
    Wenjun Bi
    Yao Liu
    Zhaokun Zhu
    Yue Tai
    En Luo
    BMC Oral Health, 24
  • [44] Machine Learning-based Detection and Classification of Walnut Fungi Diseases
    Khan, Muhammad Alyas
    Ali, Mushtaq
    Shah, Mohsin
    Mahmood, Toqeer
    Ahmad, Muneer
    Jhanjhi, N. Z.
    Bhuiyan, Mohammad Arif Sobhan
    Jaha, Emad Sami
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 30 (03) : 771 - 785
  • [45] Personalised screening tool for early detection of sarcopenia in stroke patients: a machine learning-based comparative study
    Yan, Huan
    Li, Juan
    Li, Yujie
    Xian, Lihong
    Tang, Huan
    Zhao, Xuejiao
    Lu, Ting
    AGING CLINICAL AND EXPERIMENTAL RESEARCH, 2025, 37 (01)
  • [46] Machine Learning-Based Classification of Mushrooms Using a Smartphone Application
    Lee, Jae Joong
    Aime, M. Catherine
    Rajwa, Bartek
    Bae, Euiwon
    APPLIED SCIENCES-BASEL, 2022, 12 (22):
  • [47] A Machine Learning-Based Classification and Prediction Technique for DDoS Attacks
    Mohmand, Muhammad Ismail
    Hussain, Hameed
    Khan, Ayaz Ali
    Ullah, Ubaid
    Zakarya, Muhammad
    Ahmed, Aftab
    Raza, Mushtaq
    Rahman, Izaz Ur
    Haleem, Muhammad
    IEEE ACCESS, 2022, 10 : 21443 - 21454
  • [48] Machine Learning-Based Elephant Flow Classification on the First Packet
    Jurkiewicz, Piotr
    Kadziolka, Bartosz
    Kantor, Miroslaw
    Domzal, Jerzy
    Wojcik, Robert
    IEEE ACCESS, 2024, 12 : 105744 - 105760
  • [49] A review on machine learning-based approaches for Internet traffic classification
    Salman, Ola
    Elhajj, Imad H.
    Kayssi, Ayman
    Chehab, Ali
    ANNALS OF TELECOMMUNICATIONS, 2020, 75 (11-12) : 673 - 710
  • [50] Machine learning-based classification of petrofacies in fine laminated limestones
    Genesis, Gallileu
    Gomes, Igor F.
    Barbosa, Jose Antonio
    De Araujo, Araly Fabiana L.
    Ramos, Germano Mario S.
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2024, 96 (01):