Experimental and modeling study of the oxidation of NH3/C2H4 mixtures in a shock tube

被引:0
|
作者
Song, Shubao [1 ]
Jia, Wanting [1 ]
Sun, Jiachen [1 ]
Wang, Cheng [1 ]
Shao, Jiankun [1 ]
机构
[1] Beijing Inst Technol, State Key Lab Explos Sci & Safety Protect, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Ignition delay time; Ammonia; Ethylene; Shock tube; Laser absorption spectroscopy; Kinetic model; LAMINAR BURNING VELOCITY; LASER-ABSORPTION; PREMIXED FLAMES; AMMONIA; COMBUSTION; FUEL; TEMPERATURE; ENGINE; EMISSIONS;
D O I
10.1016/j.combustflame.2024.113777
中图分类号
O414.1 [热力学];
学科分类号
摘要
Ammonia is a promising zero-carbon fuel, offering new possibilities for sustainable energy system development. In this study, ignition delay times (IDTs) of NH3/C2H4 mixtures with C2H4 contents of 0 %, 5 %, 10 %, and 25 % were measured using a shock tube at temperatures ranging from 1176 to 1904 K, pressures of 1.0-8.5 atm, and equivalence ratios of 0.5, 1.0 and 2.0. A laser absorption diagnostic system was developed to track the temporal evolution of NH3 concentration during the oxidation process behind the reflected shock waves. The experimental results indicate that the IDTs of the mixtures exhibit non-linear decrease with the addition of ethylene. Specifically, compared to pure ammonia, the addition of 5 %, 10 % and 25 % ethylene significantly increases the reactivity of the mixture, leading to a 36.7 %, 75.9 % and 90.2 % reduction in IDT at a temperature of 1563 K and a pressure of 1.0 atm, respectively. Moreover, the mixture exhibits similar reactivity under fuel-lean and stoichiometric conditions, which remains higher than the reactivity observed under fuel-rich conditions. Overall, the IDTs and the time required for complete consumption of the mixture decreases as temperature, pressure, and ethylene blending ratio increase. In order to simulate and analyze the reaction process of NH3/C2H4 mixtures, a detailed kinetic model was constructed based on previous studies by updating the interaction reaction between C2H4 and NH2 radical and validated against the current experimental results. Rate of production (ROP) and sensitivity analysis were performed to identify the primary consumption pathways of NH3/C2H4 and the significant impact of C2H4 on the reactivity. Additionally, due to the addition of C2H4, a substantial amount of NH2 radical participates in the H-abstraction reaction (C2H4 + NH2<=>C2H3 + NH3). This results in a reduced involvement of NH2 in the DeNO(x) process and, consequently, the NH3/C2H4 mixture exhibits a higher tendency to produce NOx compared to pure ammonia. Novelty and significance statement: Ammonia offers new possibilities for sustainable energy systems but faces challenges like low combustion rate and mixing with reactive fuels can effectively enhance the ignition characteristics of NH3. The ignition delay times and speciation NH3/C2H4 mixtures are systemically measured by using shock tube and laser absorption spectroscopy. A newly detailed kinetic NH3-C2H4 model is also developed based on previous studies by updating the interaction reaction between C2H4 and NH2 radical and validated against the current experimental results. The rate of production and sensitivity analysis reveal that the interaction reaction (C2H4 + NH2<=>C2H3 + NH3) have a significant impact on the ignition performance of the binary mixtures. Additionally, the DeNO(x) process of binary mixtures is suppressed due to the addition of C2H4, resulting a higher tendency to produce NOx. To our best knowledge, this is the first experimental study to systematically measure the ignition delay times and speciation data of NH3/C2H4 mixtures.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] An experimental study on the flame instability of NH3/DME blends with H2 addition
    Li, Huizhen
    Xiao, Huahua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 68 : 813 - 822
  • [32] Investigation of the NH3 consumption and H2O/NO formation during the oxidation of n-heptane and iso-octane blended with ammonia
    Zheng, Dao
    Peng, Zhimin
    He, Dong
    Zhang, Meng
    Li, Jidong
    Ding, Yanjun
    Du, Yanjun
    FUEL, 2024, 357
  • [33] Experimental study and kinetic analysis of the laminar burning velocity of NH3/syngas/air, NH3/CO/air and NH3/H2/air premixed flames at elevated pressures
    Wang, Shixing
    Wang, Zhihua
    Elbaz, Ayman M.
    Han, Xinlu
    He, Yong
    Costa, Mario
    Konnov, Alexander A.
    Roberts, William L.
    COMBUSTION AND FLAME, 2020, 221 : 270 - 287
  • [34] Reaction of NH(3Σ-) radical with C2H4:: A theoretical study
    Du, Benni
    Zhang, Weichao
    Mu, Lailong
    Feng, Changjun
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2007, 816 (1-3): : 21 - 29
  • [35] An experimental and kinetic modelling study on the oxidation of NH3, NH3/H2, NH3/CH4 in a variable pressure laminar flow reactor at engine-relevant conditions
    Zhang, Zhenyingnan
    Li, Ang
    Li, Zhuohang
    Ren, Fei
    Zhu, Lei
    Huang, Zhen
    COMBUSTION AND FLAME, 2024, 265
  • [36] Experimental and modeling of autoignition of gaseous hydrocarbon fuels in the presence of H2 and C2H4
    Gokulakrishnan, Ponnuthurai
    Fuller, Casey
    Klassen, Michael
    Davidson, David
    Hanson, Ronald
    FUEL, 2021, 296
  • [37] Conversion of NH3 and NH3-NO mixtures in a CO2 atmosphere. A parametric study
    Alzueta, Maria U.
    Gimenez-Lopez, Jorge
    Mercader, Victor D.
    Bilbao, Rafael
    FUEL, 2022, 327
  • [38] Experimental and kinetic modeling study of laminar burning velocities of NH3/syngas/air premixed flames
    Han, Xinlu
    Wang, Zhihua
    He, Yong
    Zhu, Yanqun
    Cen, Kefa
    COMBUSTION AND FLAME, 2020, 213 : 1 - 13
  • [39] Shock Tube Measurement of the C2H4 + H ↔ C2H3 + H2 Rate Constant
    Shao, Jiankun
    Choudhary, Rishav
    Peng, Yuzhe
    Davidson, David F.
    Hanson, Ronald K.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (01) : 15 - 20
  • [40] Chemical insights into the two-stage ignition behavior of NH3/H2 mixtures in an RCM
    Liao, Wanxiong
    Wang, Yiru
    Chu, Zhaohan
    Tao, Chenyue
    Yang, Bin
    COMBUSTION AND FLAME, 2023, 256