Weak Epigraphical Solutions to Hamilton-Jacobi-Bellman Equations on Infinite Horizon

被引:0
|
作者
Basco, Vincenzo [1 ]
机构
[1] Thales Alenia Space, via Saccomuro 24, Roma,00131, Italy
来源
arXiv | 2022年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 22 条
  • [1] Hamilton-Jacobi-Bellman equations on time scales
    Department of Mathematics, Guizhou University, Guiyang, 550025, China
    不详
    Math. Comput. Model., 9-10 (2019-2028):
  • [2] Hamilton-Jacobi-Bellman equations for Rydberg-blockade processes
    Fromonteil, Charles
    Tricarico, Roberto
    Cesa, Francesco
    Pichler, Hannes
    arXiv,
  • [3] A COMPARISON PRINCIPLE FOR SEMILINEAR HAMILTON-JACOBI-BELLMAN EQUATIONS IN THE WASSERSTEIN SPACE
    Daudin, Samuel
    Seeger, Benjamin
    arXiv, 2023,
  • [4] Distributional Hamilton-Jacobi-Bellman Equations for Continuous-Time Reinforcement Learning
    Wiltzer, Harley
    Meger, David
    Bellemare, Marc G.
    Proceedings of Machine Learning Research, 2022, 162 : 23832 - 23856
  • [5] STOCHASTIC OPTIMAL TRANSPORT AND HAMILTON-JACOBI-BELLMAN EQUATIONS ON THE SET OF PROBABILITY MEASURES
    Bertucci, Charles
    arXiv, 2023,
  • [6] A singular infinite dimensional Hamilton-Jacobi-Bellman equation arising from a storage problem
    Bertucci, Charles
    Lasry, Jean-Michel
    Lions, Pierre-Louis
    arXiv, 2022,
  • [7] Hamilton-Jacobi-Bellman Approach for Optimal Control Problems of Sweeping Processes
    Hermosilla, Cristopher
    Palladino, Michelle
    Vilches, Emilio
    SSRN, 2023,
  • [8] Synchronization in a multilevel network using the Hamilton-Jacobi-Bellman (HJB) technique
    Njougouo, Thierry
    Camargo, Victor
    Louodop, Patrick
    Ferreira, Fernando Fagundes
    Talla, Pierre K.
    Cerdeira, Hilda A.
    arXiv, 2022,
  • [9] An alpha derivative formulation of the Hamilton-Jacobi-Bellman equation of Dynamic Programming
    Seiffertt, John
    Proceedings of the International Joint Conference on Neural Networks, 2009, : 2854 - 2859
  • [10] On the Hamilton-Jacobi-Bellman equation for an optimal consumption problem: Ii. Verification theorem
    Department of Mathematics, Faculty of Education, Shizuoka University, Ohya, Shizuoka, 422-852, Japan
    不详
    SIAM J Control Optim, 1600, 4 (2401-2430):