Quantum Machine Learning Playground

被引:0
|
作者
Debus, Pascal [1 ]
Issel, Sebastian [1 ]
Tscharke, Kilian [1 ]
机构
[1] Fraunhofer Inst Appl & Integrated Secur, D-85748 Garching, Germany
关键词
Quantum computing; Logic gates; Qubit; Machine learning; Data visualization; Quantum entanglement; Machine learning algorithms; VISUALIZATION;
D O I
10.1109/MCG.2024.3456288
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This article introduces an innovative interactive visualization tool designed to demystify quantum machine learning (QML) algorithms. Our work is inspired by the success of classical machine learning visualization tools, such as TensorFlow Playground, and aims to bridge the gap in visualization resources specifically for the field of QML. The article includes a comprehensive overview of relevant visualization metaphors from both quantum computing and classical machine learning, the development of an algorithm visualization concept, and the design of a concrete implementation as an interactive web application. By combining common visualization metaphors for the so-called data reuploading universal quantum classifier as a representative QML model, this article aims to lower the entry barrier to quantum computing and encourage further innovation in the field. The accompanying interactive application is a proposal for the first version of a QML playground for learning and exploring QML models.
引用
收藏
页码:40 / 53
页数:14
相关论文
共 50 条
  • [1] Machine Learning: Quantum vs Classical
    Khan, Tariq M.
    Robles-Kelly, Antonio
    IEEE ACCESS, 2020, 8 : 219275 - 219294
  • [2] TensorFlow Quantum: Impacts of Quantum State Preparation on Quantum Machine Learning Performance
    Sierra-Sosa, Daniel
    Telahun, Michael
    Elmaghraby, Adel
    IEEE ACCESS, 2020, 8 : 215246 - 215255
  • [3] Quantum Driven Machine Learning
    Saini, Shivani
    Khosla, P. K.
    Kaur, Manjit
    Singh, Gurmohan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (12) : 4013 - 4024
  • [4] Quantum Driven Machine Learning
    Shivani Saini
    PK Khosla
    Manjit Kaur
    Gurmohan Singh
    International Journal of Theoretical Physics, 2020, 59 : 4013 - 4024
  • [5] Performance of Quantum Annealing Machine Learning Classification Models on ADMET Datasets
    Salloum, Hadi
    Sabbagh, Kamil
    Savchuk, Vladislav
    Lukin, Ruslan
    Orabi, Osama
    Isangulov, Marat
    Mazzara, Manuel
    IEEE ACCESS, 2025, 13 : 16263 - 16287
  • [6] Prognostics and Health Management of Rotating Machinery via Quantum Machine Learning
    Maior, Caio Bezerra Souto
    Araujo, Lavinia Maria Mendes
    Lins, Isis Didier
    Moura, Marcio Das Chagas
    Droguett, Enrique Lopez
    IEEE ACCESS, 2023, 11 : 25132 - 25151
  • [7] Experimental Evaluation of Quantum Machine Learning Algorithms
    Simoes, Ricardo Daniel Monteiro
    Huber, Patrick
    Meier, Nicola
    Smailov, Nikita
    Fuchslin, Rudolf M. M.
    Stockinger, Kurt
    IEEE ACCESS, 2023, 11 : 6197 - 6208
  • [8] Design and analysis of quantum machine learning: a survey
    Chen, Linshu
    Li, Tao
    Chen, Yuxiang
    Chen, Xiaoyan
    Wozniak, Marcin
    Xiong, Neal
    Liang, Wei
    CONNECTION SCIENCE, 2024, 36 (01)
  • [9] Quantum-Inspired Machine Learning for 6G: Fundamentals, Security, Resource Allocations, Challenges, and Future Research Directions
    Duong, Trung Q.
    Ansere, James Adu
    Narottama, Bhaskara
    Sharma, Vishal
    Dobre, Octavia A.
    Shin, Hyundong
    IEEE OPEN JOURNAL OF VEHICULAR TECHNOLOGY, 2022, 3 : 375 - 387
  • [10] HASM quantum machine learning
    Yue, Tianxiang
    Wu, Chenchen
    Liu, Yi
    Du, Zhengping
    Zhao, Na
    Jiao, Yimeng
    Xu, Zhe
    Shi, Wenjiao
    SCIENCE CHINA-EARTH SCIENCES, 2023, 66 (09) : 1937 - 1945