Accurate Kinematic-Parameters Estimation Using IMU and GPS Sensors Fusion

被引:1
|
作者
Paul, S. [1 ]
Maiti, T. K. [2 ]
机构
[1] Indian Inst Technol Guwahati IIT G, Gauhati 781039, Assam, India
[2] Dhirubhai Ambani Inst Informat & Commun Technol D, Gandhinagar 382007, Gujarat, India
关键词
Global positioning system (GPS); inertial measurement unit (IMU); Kalman filter; kinematic parameters; sensor fusion;
D O I
10.1109/JSEN.2024.3460804
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, we developed a kinematic parameters estimator (KPE) using global positioning system (GPS) and inertial measurement unit (IMU) sensors embedded with a microcontroller. A Kalman filter is implemented in KPE to fuse IMU and GPS information. The filter estimates the short-range and long-rage positions simultaneously with the combination of the GPS data and IMU orientation information. We considered Kalman filter for sensor fusion which provides accurate position estimation despite of noise and drift. We have also performed the field trials to demonstrate the usability of the developed KPE. Evaluation of proposed solution through experiments in indoor and outdoor environments, demonstrating the position accuracy with few centimeters for short-range positioning and within a meter for long-range positioning.
引用
收藏
页码:35547 / 35554
页数:8
相关论文
共 36 条
  • [1] GPS and IMU Fusion for Human Gait Estimation
    Steckenrider, T. Josiah
    Crawford, Brock
    Zheng, Penny
    2021 IEEE 24TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2021, : 977 - 983
  • [2] Global Pose Estimation with Adaptive GPS/IMU Fusion
    Oh, Taek Jun
    Chung, Myung Jin
    INTELLIGENT AUTONOMOUS SYSTEMS 12, VOL 1, 2013, 193 : 613 - 620
  • [3] Assessment of mobility deficit and treatment efficacy in adhesive capsulitis by measurement of kinematic parameters using IMU sensors
    Ajcvic, Milos
    Deodato, Manuela
    Murena, Luigi
    Miladinovic, Aleksandar
    Mezzarobba, Susanna
    Accardo, Agostino
    2020 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA), 2020,
  • [4] Dual Estimation of Attitude and Parameters Considering Vibration based on GPS and IMU
    Xin Qi
    Shi ZhongKe
    Zhu HongYu
    2013 9TH ASIAN CONTROL CONFERENCE (ASCC), 2013,
  • [5] Accurate Attitude Estimation of a Moving Land Vehicle Using Low-Cost MEMS IMU Sensors
    Ahmed, Hamad
    Tahir, Muhammad
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2017, 18 (07) : 1723 - 1739
  • [6] FusePose: IMU-Vision Sensor Fusion in Kinematic Space for Parametric Human Pose Estimation
    Bao, Yiming
    Zhao, Xu
    Qian, Dahong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 7736 - 7746
  • [7] Accurate Estimation of Running Temporal Parameters Using Foot-Worn Inertial Sensors
    Falbriard, Mathieu
    Meyer, Frederic
    Mariani, Benoit
    Millet, Gregoire P.
    Aminian, Kamiar
    FRONTIERS IN PHYSIOLOGY, 2018, 9
  • [8] Vertical Position Estimation of a Constrained Link Using IMU Signals and Kinematic Constraint
    Lee, Jung Keun
    Jung, Woo Chang
    2018 IEEE SENSORS, 2018, : 1452 - 1455
  • [9] Sensor fusion of camera, GPS and IMU using fuzzy adaptive multiple motion models
    Erkan Bostanci
    Betul Bostanci
    Nadia Kanwal
    Adrian F. Clark
    Soft Computing, 2018, 22 : 2619 - 2632
  • [10] GPS/IMU data fusion using multisensor Kalman filtering: introduction of contextual aspects
    Caron, Francois
    Duflos, Emmanuel
    Pomorski, Denis
    Vanheeghe, Philippe
    INFORMATION FUSION, 2006, 7 (02) : 221 - 230