Characteristics and source apportionment of volatile organic compounds in an industrial town of Pearl River Delta

被引:0
|
作者
Deng, Si-Xin [1 ]
Liu, Yong-Lin [2 ,3 ]
Situ, Shu-Ping [1 ]
Jiao, Ling [2 ,3 ]
Chang, Ming [2 ,3 ]
Xie, Min [4 ]
Li, Ting-Yuan [5 ]
An, Li-Na [1 ]
Zheng, Lian-Ming [2 ,3 ]
Zhou, Xue-Ling [1 ]
Kuang, Min-Er [1 ]
机构
[1] Foshan Environmental Monitoring Center, Foshan,528000, China
[2] Institute for Environmental and Climate Research, Jinan University, Guangzhou,510632, China
[3] Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou,510308, China
[4] State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Monitoring Center, Guangzhou,510308, China
[5] Guangdong Ecological Meteorological Center/Environmental Meteorology Forecast Center of Pearl River Delta, Guangzhou,510640, China
来源
Zhongguo Huanjing Kexue/China Environmental Science | 2021年 / 41卷 / 07期
关键词
Volatile organic compounds;
D O I
暂无
中图分类号
学科分类号
摘要
The volatile organic compounds (VOCs) were continuously measured in the typical industrial town Shishan in Foshan in the Pearl River Delta region, and their characteristics of variability, Ozone Formation Potentials (OFP) and source apportionment were analyzed in 2019. A total of 56 VOCs species were detected during sampling time. The concentrations of TVOCs (total VOCs) were (39.64±30.46)×10-9, and the dominated VOC components were alkanes (56.5%) and aromatics (30.1%). The general trend of seasonal variation indicated higher concentrations in spring and winter. The classified VOCs were characterized by U diurnal variation. The range of diurnal variation of polluted period was obviously greater than that of unpolluted period.The relative incremental reactivities (RIR) showed that ground-level ozone formation in the study area was generally limited by the concentrations of VOCs. The OFP concentrations of VOCs were 107.40×10-9 with the highest contributions from aromatics (54.6%).The summed of the top 10 OFP compounds accounted for 80.3% of the total OFP and 59.9% of the TVOCs. The concentrations of the key active VOCs species were higher, which should be paid more attention. Probabilistic matrix factorization (PMF) model was used to identify the sources of the VOCs.Solvent use(42.4%) and vehicle(25.8%) were the major sources of VOCs emissions in 2019, followed by industrial process(14.6%), fuel evaporation (7.9%) and biogenic emissions(1.7%). The result suggests that controlling the emission sources above would be an effective strategy to alleviate photochemical ozone pollution. © 2021, Editorial Board of China Environmental Science. All right reserved.
引用
收藏
页码:2993 / 3003
相关论文
共 50 条
  • [1] Source apportionment of ambient volatile organic compounds in the Pearl River Delta, China: Part II
    Liu, Ying
    Shao, Min
    Lu, Sihua
    Chang, Chih-Chung
    Wang, Jia-Lin
    Fu, Linlin
    ATMOSPHERIC ENVIRONMENT, 2008, 42 (25) : 6261 - 6274
  • [2] Characteristics of Volatile Organic Compounds in the Pearl River Delta Region, China: Chemical Reactivity, Source, and Emission Regions
    Yang, Weiqiang
    Yu, Qingqing
    Pei, Chenglei
    Liao, Chenghao
    Liu, Jianjun
    Zhang, Jinpu
    Zhang, Yanli
    Qiu, Xiaonuan
    Zhang, Tao
    Zhang, Yongbo
    Wang, Xinming
    ATMOSPHERE, 2022, 13 (01)
  • [3] Characteristics and Source Apportionment of Volatile Organic Compounds in an Industrial Area at the Zhejiang-Shanghai Boundary, China
    Cao, Xiang
    Yi, Jialin
    Li, Yuewu
    Zhao, Mengfei
    Duan, Yusen
    Zhang, Fei
    Duan, Lian
    ATMOSPHERE, 2024, 15 (02)
  • [4] Volatile organic compounds in the Pearl River Delta: Identification of source regions and recommendations for emission-oriented monitoring strategies
    Yuan, Zibing
    Zhong, Liuju
    Lau, Alexis Kai Hon
    Yu, Jian Zhen
    Louie, Peter K. K.
    ATMOSPHERIC ENVIRONMENT, 2013, 76 : 162 - 172
  • [5] Source apportionment modeling of volatile organic compounds in streams
    Pankow, James F.
    Asher, William E.
    Zogorski, John S.
    ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2006, 25 (04) : 921 - 932
  • [6] VOC characteristics and their source apportionment in a coastal industrial area in the Yangtze River Delta, China
    Yang, Mengrong
    Li, Fengxia
    Huang, Cenyan
    Tong, Lei
    Dai, Xiaorong
    Xiao, Hang
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2023, 127 : 483 - 494
  • [7] Characteristics and Source Apportionment of Ambient Volatile Organic Compounds in a Science Park in Central Taiwan
    Cheng, Jen-Hsuan
    Hsieh, Ming-Jui
    Chen, Kang-Shin
    AEROSOL AND AIR QUALITY RESEARCH, 2016, 16 (01) : 221 - 229
  • [8] Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China
    An, Junlin
    Zhu, Bin
    Wang, Honglei
    Li, Yongyu
    Lin, Xu
    Yang, Hui
    ATMOSPHERIC ENVIRONMENT, 2014, 97 : 206 - 214
  • [9] Source apportionment of volatile organic compounds measured in Edmonton, Alberta
    McCarthy, Michael C.
    Aklilu, Yayne-Abeba
    Brown, Steven G.
    Lyder, David A.
    ATMOSPHERIC ENVIRONMENT, 2013, 81 : 504 - 516
  • [10] Source apportionment of volatile organic compounds in Hong Kong homes
    Guo, H.
    BUILDING AND ENVIRONMENT, 2011, 46 (11) : 2280 - 2286