Collision-Free Path Planning Applied to Multi-Degree-of-Freedom Robotic Arms Using Homotopy Methods

被引:2
|
作者
Cesar Velez-Lopez, Gerardo [1 ]
Hernandez-Martinez, Luis [1 ]
Vazquez-Leal, Hector [2 ]
Sandoval-Hernandez, Mario A. [3 ,4 ]
Jimenez-Fernandez, Victor M. [2 ]
Gonzalez-Lee, Mario [5 ]
Mayorga-Cruz, Darwin [6 ,7 ]
机构
[1] Natl Inst Astrophys Opt & Elect, Elect Dept, Cholula 72840, Puebla, Mexico
[2] Univ Veracruzana, Fac Instrumentac Elect, Veracruz 91000, Mexico
[3] Tecnol Nacl Mexico, Inst Tecnol Super Poza Rica, Veracruz 93230, Mexico
[4] CBTis 190, Boca Del Rio 94297, Veracruz, Mexico
[5] Univ Veracruzana, Fac Ingn Elect & Comunicac, Poza Rica 93390, Veracruz, Mexico
[6] Consejo Veracruzano Invest Cient & Desarrollo Tecn, Xalapa 91069, Veracruz, Mexico
[7] Univ Autonoma Estado Morelos, Ctr Invest Ingn & Ciencias Aplicadas CIICAP, Cuernavaca 62209, Morelos, Mexico
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Manipulators; Collision avoidance; Robot sensing systems; Mathematical models; Robot kinematics; Path planning; Kinematics; Three-dimensional displays; Service robots; Path-planning; robotic arm; homotopic continuation methods; CRS CataLyst-5 robot arm; ALGORITHM;
D O I
10.1109/ACCESS.2024.3479095
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Robotic arms are extensively employed across various disciplines, within both structured and unstructured workspaces, as well as across numerous applications. These components serve to address a multitude of challenges, thus enabling their integration into collaborative tasks with humans. In order to address these emerging challenges, there is a growing demand for more efficient path-planning algorithms. Hence, this study introduces a technique based on homotopy continuation methods, offering a distinctive and innovative approach to tackling these issues. The methodology proposed in this study enables the modeling of robotic arms with multiple degrees of freedom. It is proficient in operating within narrow corridors and achieves a collision-free path, provided the workspace allows for it. Due to its deterministic nature, the solution path is consistently reproducible. Furthermore, the computation times and RAM memory consumption achieved for hyper-redundant robotic arms fall within the range of seconds and kilobytes (KB). For anthropomorphic or classical robotic arms, computation times are on the order of milliseconds, as evidenced by the case studies presented in this paper. The method was validated using a Thermo Electron robotic arm, specifically the CRS CataLyst-5 model. This validation demonstrated its potential for application in the field of industrial robotics.
引用
收藏
页码:150702 / 150718
页数:17
相关论文
共 50 条
  • [1] Collision-Free Path Planning Applied Robotic Arms Using Homotopy Continuation Methods for Embedded Systems
    Velez-Lopez, Gerardo C.
    Hernandez-Martinez, Luis
    Vazquez-Leal, Hector
    2021 18TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE 2021), 2021,
  • [2] A Novel Collision-Free Homotopy Path Planning for Planar Robotic Arms
    Velez-Lopez, Gerardo C.
    Vazquez-Leal, Hector
    Hernandez-Martinez, Luis
    Sarmiento-Reyes, Arturo
    Diaz-Arango, Gerardo
    Huerta-Chua, Jesus
    Rico-Aniles, Hector D.
    Jimenez-Fernandez, Victor M.
    SENSORS, 2022, 22 (11)
  • [3] Exploring collision-free path planning by using homotopy continuation methods
    Vazquez-Leal, H.
    Marin-Hernandez, A.
    Khan, Y.
    Yildirim, A.
    Filobello-Nino, U.
    Castaneda-Sheissa, R.
    Jimenez-Fernandez, V. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) : 7514 - 7532
  • [4] COLLISION-FREE PATH PLANNING FOR A 3-DEGREE-OF-FREEDOM ROBOT
    CAMPBELL, CE
    COMPUTERS & ELECTRICAL ENGINEERING, 1991, 17 (03) : 163 - 172
  • [5] Anthropomorphic motion planning for multi-degree-of-freedom arms
    Zheng, Xiongfei
    Han, Yunyun
    Liang, Jiejunyi
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
  • [6] Collision-free Path Planning for Multi-pass Robotic Welding
    Ahmed, Syeda Mariam
    Yuan, Jinqiang
    Wu, Yue
    Chew, Chee Meng
    Pang, Chee Khiang
    PROCEEDINGS OF 2015 IEEE 20TH CONFERENCE ON EMERGING TECHNOLOGIES & FACTORY AUTOMATION (ETFA), 2015,
  • [7] Optimizing Mobility of Robotic Arms in Collision-free Motion Planning
    Sascha Kaden
    Ulrike Thomas
    Journal of Intelligent & Robotic Systems, 2021, 102
  • [8] Optimizing Mobility of Robotic Arms in Collision-free Motion Planning
    Kaden, Sascha
    Thomas, Ulrike
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2021, 102 (02)
  • [9] MINIMUM TIME COLLISION-FREE PATH PLANNING FOR ROBOTIC ASSEMBLY
    REDMAN, RS
    ELGIZAWY, AS
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 1992, 30 (06) : 1301 - 1312
  • [10] Automatic path planning for pelvic fracture reduction with multi-degree-of-freedom
    Shi, Chao
    Yang, Qing
    Wang, Yuantian
    Zhao, Xiangrui
    Shi, Shuchang
    Zhang, Lijia
    Yibulayimu, Sutuke
    Liu, Yanzhen
    Liang, Chendi
    Wang, Yu
    Zhao, Chunpeng
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2025, 261