Deep reinforcement learning for autonomous SideLink radio resource management in platoon-based C-V2X networks: An overview

被引:0
|
作者
Trabelsi, Nessrine [1 ]
Fourati, Lamia Chaari [1 ]
Jaafar, Wael [2 ]
机构
[1] Digital Res Ctr Sfax CRNS, Lab Signals Syst Artificial Intelligence & Network, Sfax 3021, Tunisia
[2] Ecole Technol Super ETS, Dept Software & IT Engn, Montreal, PQ H3C 1K3, Canada
关键词
Deep reinforcement learning; Single and multi-agent; Markov decision process; SideLink radio resource management; Autonomous mode; C-V2X; Platooning; CELLULAR V2X; ALLOCATION;
D O I
10.1016/j.comnet.2024.110901
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Dynamic and autonomous SideLink (SL) Radio Resource Management (RRM) is essential for platoon-based cellular vehicular networks. However, this task is challenging due to several factors. These include the limited spectrum below 6 GHz, stringent vehicle-to-everything (V2X) communications requirements, uncertain and dynamic environments, limited vehicle sensing capabilities, and inherent distributed operation. These limitations often lead to resource collisions, data packet loss, and increased latency. Current standardized approaches in Long-Term Evolution-V2X (LTE-V2X) and New Radio-V2X (NR-V2X) rely on random resource selection, limiting their efficiency. Moreover, RRM is inherently a complex combinatorial optimization problem. It may involve conflicting objectives and constraints, making traditional approaches inadequate. Platoon-based communication necessitates careful resource allocation to support a diverse mix of communication types. These include safety-critical control messaging within platoons, less time-sensitive traffic management information between platoons, and even infotainment services like media streaming. Optimizing resource sharing inter- and intra-platoons is crucial to avoid excessive interference and ensure overall network performance. Deep Reinforcement Learning (DRL), combining Deep Learning (DL) and Reinforcement Learning (RL), has recently been investigated for network resource management. It offers a potential solution for these challenges. A DRL agent, represented by deep neural networks, interacts with the environment and learns optimal decision-making through trial and error. This paper overviews proposed DRL-based methods for autonomous SL RRM in single and multi-agent platoon-based C-V2X networks. It considers both intra- and inter-platoon communications with their specific requirements. We discuss the components of Markov Decision Processes (MDP) used to model the sequential decision-making of RRM. We then detail the DRL algorithms, training paradigms, and insights on the achieved results. Finally, we highlight challenges in existing works and suggest strategies for addressing them.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Deep Reinforcement Learning based Distributed Resource Allocation for V2V Broadcasting
    Ye, Hao
    Li, Geoffrey Ye
    2018 14TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2018, : 440 - 445
  • [42] Multi-Agent Deep Reinforcement Learning-Based Resource Allocation for Cognitive Radio Networks
    Mei, Ruru
    Wang, Zhugang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (03) : 4744 - 4757
  • [43] Multi-Agent Reinforcement Learning- Based Resource Management for V2X Communication
    Zhao, Nan
    Wang, Jiaye
    Jin, Bo
    Wang, Ru
    Wu, Minghu
    Liu, Yu
    Zheng, Lufeng
    INTERNATIONAL JOURNAL OF MOBILE COMPUTING AND MULTIMEDIA COMMUNICATIONS, 2023, 14 (01)
  • [44] Deep Reinforcement Learning-Empowered Resource Allocation for Mobile Edge Computing in Cellular V2X Networks
    Li, Dongji
    Xu, Shaoyi
    Li, Pengyu
    SENSORS, 2021, 21 (02) : 1 - 18
  • [45] Deep Reinforcement Learning-Based Distributed Congestion Control in Cellular V2X Networks
    Choi, Joo-Young
    Jo, Han-Shin
    Mun, Cheol
    Yook, Jong-Gwan
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (11) : 2582 - 2586
  • [46] Multi-Slot Secure Offloading and Resource Management in VEC Networks: A Deep Reinforcement Learning-Based Method
    Li, Zhen
    Gong, Jialong
    Xiong, Xiong
    Wang, Dong
    IEEE ACCESS, 2025, 13 : 4533 - 4546
  • [47] Edge Computing-enabled Intrusion Detection for C-V2X Networks using Federated Learning
    Selamnia, Aymene
    Brik, Bouziane
    Senouci, Sidi Mohammed
    Boualouache, Abdelwahab
    Hossain, Shajjad
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 2080 - 2085
  • [48] Deep Reinforcement Learning-based Radio Resource Allocation and Beam Management under Location Uncertainty in 5G mmWave Networks
    Yao, Yujie
    Zhou, Hao
    Erol-Kantarci, Melike
    2022 27TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2022), 2022,
  • [49] An Efficient Deep Reinforcement Learning Based Distributed Channel Multiplexing Framework for V2X Communication Networks
    Hu, Run
    Wang, Xinguo
    Su, Yuyuan
    Yang, Bin
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS AND COMPUTER ENGINEERING (ICCECE), 2021, : 154 - 160
  • [50] Semantic-Aware Resource Allocation Based on Deep Reinforcement Learning for 5G-V2X HetNets
    Shao, Zhiyu
    Wu, Qiong
    Fan, Pingyi
    Cheng, Nan
    Fan, Qiang
    Wang, Jiangzhou
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (10) : 2452 - 2456