STUDY ON HEAT TRANSFER CHARACTERISTICS OF SUPERCRITICAL CO2 PRINTED CIRCUIT HEAT EXCHANGERS WITH DIFFERENT SHAPE CHANNELS

被引:0
|
作者
LI, Song [1 ]
WU, Jiangbo [1 ]
DU, Xiaoze [1 ,2 ]
DONG, Haonan [1 ]
YU, Zhibin [1 ]
机构
[1] School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou
[2] School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing
来源
Thermal Science | 2024年 / 28卷 / 05期
关键词
numerical simulation; printed circuit heat exchanger; supercritical CO[!sub]2[!/sub; thermal hydraulic performance;
D O I
10.2298/TSCI240110157L
中图分类号
学科分类号
摘要
Printed circuit heat exchanger is a micro-channel heat exchanger. Because of its high efficiency, high pressure and high temperature resistance, it has been widely used in photovoltaic power generation, nuclear energy and other fields. In particular, the research on the cross-section shape of heat exchanger channel has been widely concerned by researchers. In this paper, the printed circuit heat exchanger performance of semi-circular, square and trapezoidal channels with the same inlet and outlet area is compared under the pressure of 8 MPa. The heat transfer performance of the mass-flow rate in the range of 500–2000 kg/m2 under three cross-section shapes was investigated. The results show that the heat transfer effect of fluid in the trapezoidal channel is obviously better than the other two channels. This is mainly because the heat exchange contact area of cold and hot fluids in the trapezoidal channel is large, resulting in an increase in heat exchange between cold and hot fluids. When the inlet velocity is the same, the Reynolds number of the fluid in the trapezoidal channel is larger. The outlet temperature of the cold fluid in the trapezoidal channel is 7.9% higher than that in the semi-circular channel and 4.1% higher than that in the rectangular channel. The outlet temperature of the hot fluid in the trapezoidal channel is 6.28% lower than that in the semi-circular interface channel and 3.4% lower than that in the square channel. The trapezoidal channel printed circuit heat exchanger has better heat transfer effect and better heat transfer performance. © (2024), (Serbian Society of Heat Transfer Engineers). All rights reserved.
引用
收藏
页码:3979 / 3994
页数:15
相关论文
共 50 条
  • [1] STUDY ON HEAT TRANSFER CHARACTERISTICS OF SUPERCRITICAL CO2 PRINTED CIRCUIT HEAT EXCHANGERS WITH DIFFERENT SHAPE CHANNELS
    Li, Song
    Wu, Jiangbo
    Du, Xiaoze
    Dong, Haonan
    Yu, Zhibin
    THERMAL SCIENCE, 2024, 28 (5A): : 3979 - 3994
  • [2] Numerical Study on Heat Transfer and Flow Characteristics of Supercritical CO2 in Printed Circuit Heat Exchangers with Zigzag Channels
    Wang, Qingqing
    Huang, Xin
    Xu, Bo
    Chen, Qiuxiang
    Wang, Haijun
    HEAT TRANSFER ENGINEERING, 2023, 44 (21-22) : 2127 - 2143
  • [3] Numerical study on heat transfer behavior of wavy channel supercritical CO2 printed circuit heat exchangers with different amplitude and wavelength parameters
    Wen, Zhe-Xi
    Lv, Yi-Gao
    Li, Qing
    Zhou, Ping
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 147
  • [4] Flow and Heat Transfer Characteristic Study of Supercritical CO2 in Printed Circuit Heat Exchanger
    Xu Z.
    Zhang M.
    Duan T.
    Fu W.
    Li Q.
    Li P.
    Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2021, 55 (05): : 849 - 855
  • [5] Predicting heat transfer and flow features of supercritical CO2 in printed circuit heat exchangers with novel wavy minichannels
    Khoshvaght-Aliabadi, Morteza
    Ghodrati, Parvaneh
    Mortazavi, Hamed
    Kang, Yong Tae
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 196
  • [6] PDF-based modeling on the turbulent convection heat transfer of supercritical CO2 in the printed circuit heat exchangers for the supercritical CO2 Brayton cycle
    Li, Hongzhi
    Zhang, Yifan
    Zhang, Lixin
    Yao, Mingyu
    Kruizenga, Alan
    Anderson, Mark
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 98 : 204 - 218
  • [7] Dynamic heat transfer characteristics of printed circuit precooler in supercritical CO2 Brayton cycle
    Wu, Zhenzhen
    Wang, Xuan
    Tian, Ran
    Wei, Mingshan
    APPLIED THERMAL ENGINEERING, 2024, 257
  • [8] STUDY ON CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF SUPERCRITICAL CO2 IN PRINTED CIRCUIT HEAT EXCHANGER UNDER OCEAN CONDITION
    Li, Shulei
    Liu, Dechao
    Qin, Lei
    Xie, Gongnan
    PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 11, 2021,
  • [9] Review on the characteristics of flow and heat transfer in printed circuit heat exchangers
    Huang, Changye
    Cai, Weihua
    Wang, Yue
    Liu, Yao
    Li, Qian
    Li, Biao
    APPLIED THERMAL ENGINEERING, 2019, 153 : 190 - 205
  • [10] Numerical study of the thermohydraulic performance of printed circuit heat exchangers for supercritical CO2 Brayton cycle applications
    Chai, Lei
    Tassou, Savvas A.
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY AND RESOURCE USE IN FOOD CHAINS INCLUDING WORKSHOP ON ENERGY RECOVERY CONVERSION AND MANAGEMENT;ICSEF 2018, 2019, 161 : 480 - 488