Fully Sparse Fusion for 3D Object Detection

被引:12
作者
Li, Yingyan [1 ,2 ]
Fan, Lue [1 ,2 ]
Liu, Yang [1 ]
Huang, Zehao [3 ]
Chen, Yuntao [4 ]
Wang, Naiyan [3 ]
Zhang, Zhaoxiang [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci CASIA, Inst Automat, Ctr Researchon Intelligent Percept & Comp CRIPAC, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci UCAS, Sch Future Technol, Beijing 100049, Peoples R China
[3] TuSimple, Beijing 100020, Peoples R China
[4] Chinese Acad Sci HKISICAS, Hong Kong Inst Sci & Innovat, Ctr Artificial Intelligence & Robot, Hong Kong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Three-dimensional displays; Feature extraction; Laser radar; Cameras; Detectors; Instance segmentation; Point cloud compression; 3D object detection; multi-sensor fusion; fully sparse architecture; autonomous driving; long-range perception;
D O I
10.1109/TPAMI.2024.3392303
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Currently prevalent multi-modal 3D detection methods rely on dense detectors that usually use dense Bird's-Eye-View (BEV) feature maps. However, the cost of such BEV feature maps is quadratic to the detection range, making it not scalable for long-range detection. Recently, LiDAR-only fully sparse architecture has been gaining attention for its high efficiency in long-range perception. In this paper, we study how to develop a multi-modal fully sparse detector. Specifically, our proposed detector integrates the well-studied 2D instance segmentation into the LiDAR side, which is parallel to the 3D instance segmentation part in the LiDAR-only baseline. The proposed instance-based fusion framework maintains full sparsity while overcoming the constraints associated with the LiDAR-only fully sparse detector. Our framework showcases state-of-the-art performance on the widely used nuScenes dataset, Waymo Open Dataset, and the long-range Argoverse 2 dataset. Notably, the inference speed of our proposed method under the long-range perception setting is 2.7x faster than that of other state-of-the-art multimodal 3D detection methods.
引用
收藏
页码:7217 / 7231
页数:15
相关论文
共 37 条
[11]  
Li B, 2017, IEEE INT C INT ROBOT, P1513, DOI 10.1109/IROS.2017.8205955
[12]   Stereo R-CNN based 3D Object Detection for Autonomous Driving [J].
Li, Peiliang ;
Chen, Xiaozhi ;
Shen, Shaojie .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :7636-7644
[13]   Densely Constrained Depth Estimator for Monocular 3D Object Detection [J].
Li, Yingyan ;
Chen, Yuntao ;
He, Jiawei ;
Zhang, Zhaoxiang .
COMPUTER VISION, ECCV 2022, PT IX, 2022, 13669 :718-734
[14]  
Li YH, 2023, AAAI CONF ARTIF INTE, P1477
[15]   BEVFormer: Learning Bird's-Eye-View Representation from Multi-camera Images via Spatiotemporal Transformers [J].
Li, Zhiqi ;
Wang, Wenhai ;
Li, Hongyang ;
Xie, Enze ;
Sima, Chonghao ;
Lu, Tong ;
Qiao, Yu ;
Dai, Jifeng .
COMPUTER VISION, ECCV 2022, PT IX, 2022, 13669 :1-18
[16]  
Liang TT, 2022, ADV NEUR IN
[17]   PETR: Position Embedding Transformation for Multi-view 3D Object Detection [J].
Liu, Yingfei ;
Wang, Tiancai ;
Zhang, Xiangyu ;
Sun, Jian .
COMPUTER VISION - ECCV 2022, PT XXVII, 2022, 13687 :531-548
[18]   BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation [J].
Liu, Zhijian ;
Tang, Haotian ;
Amini, Alexander ;
Yang, Xinyu ;
Mao, Huizi ;
Rus, Daniela L. ;
Han, Song .
2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, :2774-2781
[19]   FlatFormer: Flattened Window Attention for Efficient Point Cloud Transformer [J].
Liu, Zhijian ;
Yang, Xinyu ;
Tang, Haotian ;
Yang, Shang ;
Han, Song .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, :1200-1211
[20]   AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection [J].
Liu, Zongdai ;
Zhou, Dingfu ;
Lu, Feixiang ;
Fang, Jin ;
Zhang, Liangjun .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :15621-15630