Fully Sparse Fusion for 3D Object Detection

被引:7
作者
Li, Yingyan [1 ,2 ]
Fan, Lue [1 ,2 ]
Liu, Yang [1 ]
Huang, Zehao [3 ]
Chen, Yuntao [4 ]
Wang, Naiyan [3 ]
Zhang, Zhaoxiang [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci CASIA, Inst Automat, Ctr Researchon Intelligent Percept & Comp CRIPAC, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci UCAS, Sch Future Technol, Beijing 100049, Peoples R China
[3] TuSimple, Beijing 100020, Peoples R China
[4] Chinese Acad Sci HKISICAS, Hong Kong Inst Sci & Innovat, Ctr Artificial Intelligence & Robot, Hong Kong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Three-dimensional displays; Feature extraction; Laser radar; Cameras; Detectors; Instance segmentation; Point cloud compression; 3D object detection; multi-sensor fusion; fully sparse architecture; autonomous driving; long-range perception;
D O I
10.1109/TPAMI.2024.3392303
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Currently prevalent multi-modal 3D detection methods rely on dense detectors that usually use dense Bird's-Eye-View (BEV) feature maps. However, the cost of such BEV feature maps is quadratic to the detection range, making it not scalable for long-range detection. Recently, LiDAR-only fully sparse architecture has been gaining attention for its high efficiency in long-range perception. In this paper, we study how to develop a multi-modal fully sparse detector. Specifically, our proposed detector integrates the well-studied 2D instance segmentation into the LiDAR side, which is parallel to the 3D instance segmentation part in the LiDAR-only baseline. The proposed instance-based fusion framework maintains full sparsity while overcoming the constraints associated with the LiDAR-only fully sparse detector. Our framework showcases state-of-the-art performance on the widely used nuScenes dataset, Waymo Open Dataset, and the long-range Argoverse 2 dataset. Notably, the inference speed of our proposed method under the long-range perception setting is 2.7x faster than that of other state-of-the-art multimodal 3D detection methods.
引用
收藏
页码:7217 / 7231
页数:15
相关论文
共 37 条
  • [1] TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with Transformers
    Bai, Xuyang
    Hu, Zeyu
    Zhu, Xinge
    Huang, Qingqiu
    Chen, Yilun
    Fu, Hangbo
    Tai, Chiew-Lan
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1080 - 1089
  • [2] M3D-RPN: Monocular 3D Region Proposal Network for Object Detection
    Brazil, Garrick
    Liu, Xiaoming
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9286 - 9295
  • [3] Caesar H, 2020, PROC CVPR IEEE, P11618, DOI 10.1109/CVPR42600.2020.01164
  • [4] VoxelNeXt: Fully Sparse VoxelNet for 3D Object Detection and Tracking
    Chen, Yukang
    Liu, Jianhui
    Zhang, Xiangyu
    Qi, Xiaojuan
    Jia, Jiaya
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 21674 - 21683
  • [5] Chong Z, 2022, PROC INT C LEARN REP
  • [6] Fan L., 2022, Adv. Neural. Inf. Process. Syst., V35, P351
  • [7] Super Sparse 3D Object Detection
    Fan, Lue
    Yang, Yuxue
    Wang, Feng
    Wang, Naiyan
    Zhang, Zhaoxiang
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) : 12490 - 12505
  • [8] LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector
    Guo, Xiaoyang
    Shi, Shaoshuai
    Wang, Xiaogang
    Li, Hongsheng
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3133 - 3143
  • [9] 3D Video Object Detection with Learnable Object-Centric Global Optimization
    He, Jiawei
    Chen, Yuntao
    Wang, Naiyan
    Zhang, Zhaoxiang
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 5106 - 5115
  • [10] Huang JJ, 2022, Arxiv, DOI arXiv:2203.17054