In situ photothermal catalytic cell for X-ray absorption fine structure spectroscopy measurement

被引:0
作者
Mei, Bingbao [1 ]
Shen, Di [2 ]
Wei, Yao [3 ]
Ma, Jingyuan [1 ]
Sun, Fanfei [1 ]
机构
[1] Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai
[2] Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin
[3] Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai
来源
Materials Today Catalysis | 2024年 / 7卷
基金
中国国家自然科学基金;
关键词
CO[!sub]2[!/sub] hydrogenation; In situ cell; Photothermal reaction; WO[!sub]3[!/sub; XAFS;
D O I
10.1016/j.mtcata.2024.100071
中图分类号
学科分类号
摘要
The burgeoning field of photothermal catalysis has garnered increasing interest due to the synergistic effects of light and thermal activation. Understanding the intrinsic reaction dynamics and structural evolution during the photothermal catalytic process is crucial for the design of effective photothermal devices and catalysts, as well as for optimizing photothermal performance. In situ X-ray absorption fine structure (XAFS) spectroscopy under operational conditions provides a powerful tool for revealing deep insights into atomic and electronic structures. In this study, we designed and constructed a multifunctional in situ photothermal catalytic cell for XAFS measurement, incorporating gas flow, optical sensing, temperature control, and monitoring. We detail the systematic design of the cell, facilitating the further development of portable and effective devices. To validate the cell's performance, we used commercial WO3 powder as a reference and obtained high-quality XAFS spectra under the influence of light and heat; we also explored the enhanced charge separation efficiency and the consequent improvement in reaction kinetics due to light irradiation. This study underscores the critical role of in situ cells in operational settings and offers a novel perspective on the mechanisms underlying photothermal reactions. © 2024 The Authors
引用
收藏
相关论文
共 30 条
[1]  
Sun S., Sun H., Williams P.T., Wu C., Recent advances in integrated CO2 capture and utilization: a review, Sustain. Energy Fuels, 5, 18, pp. 4546-4559, (2021)
[2]  
Chen Z., Zhang G., Chen H., Prakash J., Zheng Y., Sun S., Multi-metallic catalysts for the electroreduction of carbon dioxide: recent advances and perspectives, Renew. Sustain. Energy Rev., 155, (2022)
[3]  
Liu X., Chen T., Xue Y., Fan J., Shen S., Hossain M.S.A., Amin M.A., Pan L., Xu X., Yamauchi Y., Nanoarchitectonics of MXene/semiconductor heterojunctions toward artificial photosynthesis via photocatalytic CO2 reduction, Coord. Chem. Rev., 459, (2022)
[4]  
Wang H.-N., Zou Y.-H., Sun H.-X., Chen Y., Li S.-L., Lan Y.-Q., Recent progress and perspectives in heterogeneous photocatalytic CO2 reduction through a solid–gas mode, Coord. Chem. Rev., 438, (2021)
[5]  
Yan Y., Borhani T.N., Subraveti S.G., Pai K.N., Prasad V., Rajendran A., Nkulikiyinka P., Asibor J.O., Zhang Z., Shao D., Wang L., Zhang W., Yan Y., Ampomah W., You J., Wang M., Anthony E.J., Manovic V., Clough P.T., Harnessing the power of machine learning for carbon capture, utilisation, and storage (CCUS) – a state-of-the-art review, Energy Environ. Sci., 14, 12, pp. 6122-6157, (2021)
[6]  
Gao W., Liang S., Wang R., Jiang Q., Zhang Y., Zheng Q., Xie B., Toe C.Y., Zhu X., Wang J., Huang L., Gao Y., Wang Z., Jo C., Wang Q., Wang L., Liu Y., Louis B., Scott J., Roger A.-C., Amal R., He H., Park S.-E., Industrial carbon dioxide capture and utilization: state of the art and future challenges, Chem. Soc. Rev., 49, 23, pp. 8584-8686, (2020)
[7]  
Wang Z., Yang Z., Fang R., Yan Y., Ran J., Zhang L., A state-of-the-art review on action mechanism of photothermal catalytic reduction of CO2 in full solar spectrum, Chem. Eng. J., 429, (2022)
[8]  
Wang Z., Yang Z., Kadirova Z.C., Guo M., Fang R., He J., Yan Y., Ran J., Photothermal functional material and structure for photothermal catalytic CO2 reduction: recent advance, application and prospect, Coord. Chem. Rev., 473, (2022)
[9]  
Parastaev A., Muravev V., Huertas Osta E., van Hoof A.J.F., Kimpel T.F., Kosinov N., Hensen E.J.M., Boosting CO2 hydrogenation via size-dependent metal–support interactions in cobalt/ceria-based catalysts, Nat. Catal., 3, 6, pp. 526-533, (2020)
[10]  
Chernyak S.A., Ivanov A.S., Stolbov D.N., Maksimov S.V., Maslakov K.I., Chernavskii P.A., Pokusaeva Y.A., Koklin A.E., Bogdan V.I., Savilov S.V., Sintered Fe/CNT framework catalysts for CO2 hydrogenation into hydrocarbons, Carbon, 168, pp. 475-484, (2020)