Ratchet current and scaling properties in a nontwist mapping

被引:0
|
作者
Sales, Matheus Rolim [1 ]
Borin, Daniel [1 ]
de Souza, Leonardo Costa [2 ]
Szezech Jr, Jose Danilo [3 ,4 ]
Viana, Ricardo Luiz [5 ]
Caldas, Ibere Luiz [2 ]
Leonel, Edson Denis [1 ]
机构
[1] Univ Estadual Paulista UNESP, Dept Fis, BR-13506900 Rio Claro, SP, Brazil
[2] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil
[3] Univ Estadual Ponta Grossa, Programa Posgrad Ciencias, BR-84030900 Ponta Grossa, PR, Brazil
[4] Univ Estadual Ponta Grossa, Dept Matemat & Estat, BR-84030900 Ponta Grossa, PR, Brazil
[5] Univ Fed Parana, Dept Fis, Curitiba, PR, Brazil
关键词
Ratchet effect; Unbalanced stickiness; Scaling invariance; Critical exponents; MARKOV-TREE MODEL; CHAOTIC TRANSPORT; DIRECTED CURRENT; STICKINESS; PARTICLES; STOCHASTICITY; INSTABILITY; RECURRENCE; DIFFUSION; SYSTEMS;
D O I
10.1016/j.chaos.2024.115614
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the transport of particles in the chaotic component of phase space for a two-dimensional, area-preserving nontwist map. The survival probability for particles within the chaotic sea is described by an exponential decay for regions in phase space predominantly chaotic and it is scaling invariant in this case. Alternatively, when considering mixed chaotic and regular regions, there is a deviation from the exponential decay, characterized by a power law tail for long times, a signature of the stickiness effect. Furthermore, due the asymmetry of the chaotic component of phase space with respect to the line I = 0, there is an unbalanced stickiness that generates a ratchet current in phase space. Finally, we perform a phenomenological description of the diffusion of chaotic particles by identifying three scaling hypotheses, and obtaining the critical exponents via extensive numerical simulations.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Ratchet current in nontwist Hamiltonian systems
    Mugnaine, Michele
    Batista, Antonio M.
    Caldas, Ibere L.
    Szezech Jr, Jose D.
    Viana, Ricardo L.
    CHAOS, 2020, 30 (09)
  • [2] Scaling properties and universality in a ratchet system
    J.A. de Oliveira
    E. D. Leonel
    The European Physical Journal Special Topics, 2014, 223 : 2969 - 2978
  • [3] Scaling properties and universality in a ratchet system
    de Oliveira, J. A.
    Leonel, E. D.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (13): : 2969 - 2978
  • [4] Scaling theory of a quantum ratchet
    Hamamoto, Keita
    Park, Takamori
    Ishizuka, Hiroaki
    Nagaosa, Naoto
    PHYSICAL REVIEW B, 2019, 99 (06)
  • [5] Nontwist field line mapping in a tokamak with ergodic magnetic limiter
    Mugnaine, Michele
    Caldas, Ibere L.
    Szezech Jr, Jose D.
    Viana, Ricardo L.
    PHYSICAL REVIEW E, 2023, 108 (05)
  • [6] Symmetries of the ratchet current
    De Roeck, Wojciech
    Maes, Christian
    PHYSICAL REVIEW E, 2007, 76 (05):
  • [7] Current inversion in the Levy ratchet
    Dybiec, Bartlomiej
    PHYSICAL REVIEW E, 2008, 78 (06):
  • [8] Modeling local scaling properties for multiscale mapping
    Cheng, Qiuming
    VADOSE ZONE JOURNAL, 2008, 7 (02): : 525 - 532
  • [9] Efficiency and current in a correlated ratchet
    Ai, BQ
    Liu, GT
    Xie, HZ
    Wen, DH
    Wang, XJ
    Chen, W
    Liu, LG
    CHAOS, 2004, 14 (04) : 957 - 962
  • [10] Nonsinusoidal current and current reversals in a gating ratchet
    Dinis, Luis
    Quintero, Niurka R.
    PHYSICAL REVIEW E, 2015, 91 (03):