An automatic multi-precursor flow-type atomic layer deposition system

被引:0
|
作者
Rodriguez, Daniel J. [1 ]
Her, Mai A. [2 ]
Usov, Igor O. [1 ]
Safarik, D. J. [2 ]
Jones, Rommel [2 ]
Heidlage, Michael G. [2 ]
Gorey, Timothy J. [2 ]
机构
[1] Los Alamos Natl Lab, Engn Mat Grp MST 7, POB 1663, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Finishing Mfg Sci Sigma 2, POB 1663, Los Alamos, NM 87545 USA
关键词
QUARTZ-CRYSTAL MICROBALANCE; THIN-FILM GROWTH; AL2O3; FILMS; ULTRATHIN; SILICON; OXIDE;
D O I
10.1063/5.0222271
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Designs for two automated atomic layer deposition (ALD) flow reactors are presented, and their capabilities for coating additively manufactured (AM) metal prints are described. One instrument allows the coating of several AM parts in batches, while the other is useful for single part experiments. To demonstrate reactor capabilities, alumina (Al2O3) was deposited onto AM 316L stainless steel by dosing with water (H2O) vapor and trimethylaluminum (TMA) and purging with nitrogen gas (N-2). Both instruments are controlled by custom-programmed LabVIEW software that enables in situ logging of temperature, total pressure, and film thickness using a quartz crystal microbalance. An initial result shows that 150 ALD cycles led to a film thickness of similar to 55 nm, which was verified with Rutherford backscattering spectroscopy. This indicates that the reactors were indeed depositing single atomic layers of Al2O3 per ALD cycle, as intended.
引用
收藏
页数:8
相关论文
共 50 条
  • [32] Incomplete elimination of precursor ligands during atomic layer deposition of zinc-oxide, tin-oxide, and zinc-tin-oxide
    Mackus, Adriaan J. M.
    Maclsaac, Callisto
    Kim, Woo-Hee
    Bent, Stacey F.
    JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (05)
  • [33] Precursor design and cascade mechanism of RuO2•xH2O atomic layer deposition
    Wang, Yongjia
    Bai, Chenqi
    Zhao, Yongxiao
    Zhu, Yuanyuan
    Li, Jing
    Xu, Lina
    Xiao, Hongping
    Shi, Qian
    Ding, Yihong
    Li, Aidong
    Fang, Guoyong
    APPLIED SURFACE SCIENCE, 2024, 657
  • [34] Nucleation and Growth of Silver Nanoparticles by AB and ABC-Type Atomic Layer Deposition
    Masango, Sicelo S.
    Peng, Lingxuan
    Marks, Laurence D.
    Van Duyne, Richard P.
    Stair, Peter C.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (31) : 17655 - 17661
  • [35] Tuning the band gap and carrier concentration of titania films grown by spatial atomic layer deposition: a precursor comparison
    Armstrong, Claire
    Delumeau, Louis-Vincent
    Munoz-Rojas, David
    Kursumovic, Ahmed
    MacManus-Driscoll, Judith
    Musselman, Kevin P.
    NANOSCALE ADVANCES, 2021, 3 (20): : 5908 - 5918
  • [36] Process study of gadolinium aluminate atomic layer deposition from the gadolinium tris-di-isopropylacetamidinate precursor
    Rodriguez, Leonard N. J.
    Franquet, A.
    Brijs, B.
    Tielens, H.
    Adelmann, C.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2012, 30 (01):
  • [37] Atomic Layer Deposition of p-Type Bi2S3
    Mahuli, Neha
    Saha, Debabrata
    Sarkar, Shaibal K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (14) : 8136 - 8144
  • [38] Electrochemical reduction of carbon dioxide to formate in a flow cell on CuSx grown by atomic layer deposition
    Suominen, M.
    Mantymaki, M.
    Mattinen, M.
    Sainio, J.
    Putkonen, M.
    Kallio, T.
    MATERIALS TODAY SUSTAINABILITY, 2023, 24
  • [39] Experimental and numerical investigations into the transient multi-wafer batch atomic layer deposition process with vertical and horizontal wafer arrangements
    Pan, Dongqing
    Ma, Lulu
    Xie, Yuanyuan
    Wang, Fenfen
    Jen, Tien-Chien
    Yuan, Chris
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 91 : 416 - 427
  • [40] Unravelling the selective growth mechanism of AlOx with dimethylaluminum isopropoxide as a precursor in atomic layer deposition: a combined theoretical and experimental study
    Yang, Jiaqiang
    Cao, Kun
    Hu, Quan
    Wen, Yanwei
    Liu, Xiao
    Chen, Rong
    Shan, Bin
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (08) : 4308 - 4317