Collective lattice excitations in the dynamic route for melting hydrodynamic two-dimensional crystals

被引:1
|
作者
Kharbedia, Mikheil [1 ]
Caselli, Niccolo [1 ,2 ]
Calero, Macarena [1 ,2 ,3 ]
Moleiro, Lara H. [1 ,2 ]
Castillo, Jesus F. [1 ,2 ]
Santiago, Jose A. [4 ]
Herraez-Aguilar, Diego [5 ]
Monroy, Francisco [1 ,2 ]
机构
[1] Univ Complutense Madrid, Dept Phys Chem, Ciudad Univ S-N, Madrid E-28040, Spain
[2] Inst Invest Sanitaria Hosp Doce Octubre, Translat Biophys, Ave Andalucia S-N, E-28041 Madrid, Spain
[3] Univ Camilo Jose Cela, Fac HM Ciencias Salud, Madrid 28692, Spain
[4] Univ Autonoma Metropolitana Cuajimalpa, Dept Matemat Aplicadas & Sistemas, Vasco Quiroga 4871, Mexico City 05348, Mexico
[5] Univ Francisco de Vitoria, Inst Invest Biosanitarias, Carretera Pozuelo, E-28223 Pozuelo De Alarcon, Spain
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
关键词
INCOMPRESSIBLE VISCOUS-FLUID; PATTERN-FORMATION; SQUARE PATTERNS; LOCAL-STRUCTURE; FARADAY; TURBULENCE; SYMMETRY; BREAKING; STATES; WAVES;
D O I
10.1103/PhysRevResearch.6.043142
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Liquid surface stiffness generates stable Faraday wave (FW) patterns, known as hydrodynamic crystals, which form resonant FW lattices composed of discrete harmonics and subharmonics under monochromatic driving. Key interactions include inertia-driven parametric resonance, which halves subharmonic modes, and surface rigidity harnessing three-wave coupling, which focuses the nonlinear harmonic wave field. Here, we reveal these wave interaction processes allowing coherent FW packets to organize in space and time while also exciting decoherent disorder in the hydrodynamic crystal lattice. Collective excitations are shown to emerge as dispersionless dislocation waves, causing periodic amplitude modulations due to explicit symmetry breaking. From a field theory perspective, we show chaotic FW degeneration leading to hydrodynamic crystal melting via continuous mode halving under forcing, akin to Landau's theory of chaotic turbulence.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Triangular lattice model of two-dimensional defect melting
    Dietel, J
    Kleinert, H
    PHYSICAL REVIEW B, 2006, 73 (02)
  • [22] SEARCH FOR TWO-DIMENSIONAL MELTING IN A LATTICE OF SUPERCONDUCTING VORTICES
    MARTINOLI, P
    NSABIMANA, M
    RACINE, GA
    BECK, H
    CLEM, JR
    HELVETICA PHYSICA ACTA, 1983, 56 (1-3): : 765 - 785
  • [23] The melting of two-dimensional electron crystals in narrow channels
    Syvokon, V. E.
    Sharapova, I. V.
    LOW TEMPERATURE PHYSICS, 2019, 45 (12) : 1267 - 1276
  • [24] Collective excitations of a trapped Bose-Einstein condensate in the presence of weak disorder and a two-dimensional optical lattice
    Hu, Ying
    Liang, Zhaoxin
    Hu, Bambi
    PHYSICAL REVIEW A, 2010, 81 (05):
  • [25] COLLECTIVE EXCITATIONS IN A TWO-DIMENSIONAL CLASSICAL PLASMA ON A DIELECTRIC FILM.
    Monarkha, Yu.P.
    1600, (03):
  • [26] Collective spin precession excitations in a two-dimensional quantum Hall ferromagnet
    Kulik, L. V.
    Zhuravlev, A. S.
    Kirpichev, V. E.
    Bisti, V. E.
    Kukushkin, I. V.
    PHYSICAL REVIEW B, 2013, 87 (04):
  • [27] Collective excitations of a two-dimensional interacting Bose gas in external fields
    Fil, DV
    Shevchenko, SI
    PHYSICAL REVIEW A, 2001, 64 (01): : 136071 - 136077
  • [28] Numerical simulation of melting dynamic process and surface scale properties of two-dimensional honeycomb lattice
    Li Rui-Tao
    Tang Gang
    Xia Hui
    Xun Zhi-Peng
    Li Jia-Xiang
    Zhu Lei
    ACTA PHYSICA SINICA, 2019, 68 (05)
  • [29] Lattice model for ordering in two-dimensional plastic crystals
    Perram, JW
    Præstgaard, E
    Smith, ER
    PHYSICA A, 2000, 279 (1-4): : 296 - 302
  • [30] DYNAMICS OF DISLOCATION MEDIATED MELTING OF A TWO-DIMENSIONAL ELECTRON LATTICE
    MAST, DB
    GUO, CJ
    STAN, MA
    MEHROTRA, R
    RUAN, YZ
    DAHM, AJ
    SURFACE SCIENCE, 1984, 142 (1-3) : 100 - 103