Magnetic and Thermodynamic Properties of the Cylindrical DMS Quantum Dot

被引:0
作者
Babanli, A. M. [1 ]
Balci, M. [2 ]
Sabyrov, V. [3 ,4 ]
Saparguliyev, R. [3 ]
Shamuhammedov, Sh. [3 ]
Kakalyyev, A. [3 ]
机构
[1] Suleyman Demirel Univ, Dept Phys, TR-32260 Isparta, Turkiye
[2] Isparta Univ Appl Sci, TR-32260 Isparta, Turkiye
[3] Inst Engn Tech & Transport Commun Turkmenistan, Ashkhabad 74400, Turkmenistan
[4] Suleyman Demirel Univ, Inst Nat Sci, TR-32260 Isparta, Turkiye
关键词
Magnetic susceptibility; Quantum dot; Diluted magnetic semiconductors; SPIN-ORBIT INTERACTION; HYDROGENIC IMPURITY; ELECTRON; FIELD; HEAT;
D O I
10.1007/s10909-024-03222-x
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this work, the magnetic and thermodynamic properties of dilute magnetic semiconductor quantum dots of cylindrical geometry are investigated. The eigenvalue of the quantum system we are considering is obtained by solving the one-electron Schr & ouml;dinger equation within the framework of the effective mass approach. Then, taking into account the energy spectrum, expressions for thermodynamic quantities and magnetic susceptibility are obtained. The behavior of these expressions depending on temperature is studied using the parameters B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}, x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document}, R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0}$$\end{document} and L0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{0}$$\end{document}. Based on the results obtained, it is established that the average energy, free energy, heat capacity, entropy and magnetic susceptibility at low temperatures depend on the parameter x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document}. Also at low temperatures, when x=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x = 0$$\end{document}, the average energy and free energy exhibit a linear relationship. With increasing temperature, this dependence becomes nonlinear. For x not equal 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \ne 0$$\end{document}, the dependence of the average energy and free energy on temperature is a rapidly increasing nonlinear function. In addition, when x not equal 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \ne 0$$\end{document}, magnetic susceptibility reaches a maximum at low temperatures. The peak height increases with x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document} and disappears when x=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x = 0$$\end{document}. The peak of magnetic susceptibility decreases as the magnetic field increases when x not equal 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \ne 0$$\end{document} and shifts toward higher temperatures. The specific heat forms a Schottky peak at low temperatures and asymptotically approaches Cv=3kB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{v} = 3k_{B}$$\end{document} at high temperatures.
引用
收藏
页码:584 / 597
页数:14
相关论文
共 50 条
  • [21] Absorption coefficient of a DMS ellipsoid quantum dot with Rashba spin-orbit interaction
    Babanli, A. M.
    Balci, M.
    Ovezov, M.
    Orazov, G.
    Sabyrov, V.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2024, 23 (04) : 751 - 758
  • [22] Revisiting the problem of a single electron cylindrical quantum dot in constant magnetic field
    Mathew, Agile
    Nandy, Malay Kumar
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (05) : 1383 - 1386
  • [23] Direct interband light absorption in a cylindrical quantum dot in quantizing magnetic field
    Atoyan, MS
    Kazaryan, EM
    Sarkisyan, H
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 22 (04) : 860 - 866
  • [24] Effect of Magnetic Field on Internal Energy and Entropy of a Parabolic Cylindrical Quantum Dot
    R. Khordad
    M.A. Sadeghzadeh
    A. Mohamadian Jahan-abad
    Communications in Theoretical Physics, 2013, 59 (05) : 655 - 660
  • [25] Interband transitions in cylindrical layer quantum dot: Influence of magnetic and electric fields
    Harutyunyan, V. A.
    Kazaryan, E. M.
    Kostanyan, A. A.
    Sarkisyan, H. A.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 36 (01) : 114 - 118
  • [26] The Effect of Magnetic on the Properties of a Parabolic Quantum Dot Qubit
    Wei-Ping Li
    Ji-Wen Yin
    Yi-Fu Yu
    Zi-Wu Wang
    Jing-Lin Xiao
    Journal of Low Temperature Physics, 2010, 160 : 112 - 118
  • [27] Effect of confinement potential shape on the electronic, thermodynamic, magnetic and transport properties of a GaAs quantum dot at finite temperature
    Jahan, K. Luhluh
    Boyacioglu, Bahadir
    Chatterjee, Ashok
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [28] The Effect of Magnetic on the Properties of a Parabolic Quantum Dot Qubit
    Li, Wei-Ping
    Yin, Ji-Wen
    Yu, Yi-Fu
    Wang, Zi-Wu
    Xiao, Jing-Lin
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2010, 160 (3-4) : 112 - 118
  • [29] Magnetic properties of a SnO2 quantum dot
    Zhang, Yong
    Tang, Li-Ming
    Tang, Zhen-Kun
    Ning, Feng
    Chen, Ke-Qiu
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2013, 53 : 72 - 77
  • [30] Thermodynamic properties of GaAs quantum dot confined by asymmetric Gaussian potential
    Ghanbari, Ahmad
    Birooni, Raziyeh
    HIGH TEMPERATURES-HIGH PRESSURES, 2022, 51 (05) : 367 - 379