Magnetic and Thermodynamic Properties of the Cylindrical DMS Quantum Dot

被引:0
作者
Babanli, A. M. [1 ]
Balci, M. [2 ]
Sabyrov, V. [3 ,4 ]
Saparguliyev, R. [3 ]
Shamuhammedov, Sh. [3 ]
Kakalyyev, A. [3 ]
机构
[1] Suleyman Demirel Univ, Dept Phys, TR-32260 Isparta, Turkiye
[2] Isparta Univ Appl Sci, TR-32260 Isparta, Turkiye
[3] Inst Engn Tech & Transport Commun Turkmenistan, Ashkhabad 74400, Turkmenistan
[4] Suleyman Demirel Univ, Inst Nat Sci, TR-32260 Isparta, Turkiye
关键词
Magnetic susceptibility; Quantum dot; Diluted magnetic semiconductors; SPIN-ORBIT INTERACTION; HYDROGENIC IMPURITY; ELECTRON; FIELD; HEAT;
D O I
10.1007/s10909-024-03222-x
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this work, the magnetic and thermodynamic properties of dilute magnetic semiconductor quantum dots of cylindrical geometry are investigated. The eigenvalue of the quantum system we are considering is obtained by solving the one-electron Schr & ouml;dinger equation within the framework of the effective mass approach. Then, taking into account the energy spectrum, expressions for thermodynamic quantities and magnetic susceptibility are obtained. The behavior of these expressions depending on temperature is studied using the parameters B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}, x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document}, R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{0}$$\end{document} and L0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{0}$$\end{document}. Based on the results obtained, it is established that the average energy, free energy, heat capacity, entropy and magnetic susceptibility at low temperatures depend on the parameter x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document}. Also at low temperatures, when x=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x = 0$$\end{document}, the average energy and free energy exhibit a linear relationship. With increasing temperature, this dependence becomes nonlinear. For x not equal 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \ne 0$$\end{document}, the dependence of the average energy and free energy on temperature is a rapidly increasing nonlinear function. In addition, when x not equal 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \ne 0$$\end{document}, magnetic susceptibility reaches a maximum at low temperatures. The peak height increases with x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document} and disappears when x=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x = 0$$\end{document}. The peak of magnetic susceptibility decreases as the magnetic field increases when x not equal 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \ne 0$$\end{document} and shifts toward higher temperatures. The specific heat forms a Schottky peak at low temperatures and asymptotically approaches Cv=3kB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{v} = 3k_{B}$$\end{document} at high temperatures.
引用
收藏
页码:584 / 597
页数:14
相关论文
共 50 条
  • [1] Thermal and magnetic properties of cylindrical quantum dot with asymmetric confinement
    Gumber, Sukirti
    Kumar, Manoj
    Gambhir, Monica
    Mohan, Man
    Jha, Pradip Kumar
    CANADIAN JOURNAL OF PHYSICS, 2015, 93 (11) : 1264 - 1268
  • [2] Strain and magnetic field effect on thermodynamic properties of a two dimensional GaAs quantum dot
    Ghanbari, Ahmad
    HIGH TEMPERATURES-HIGH PRESSURES, 2023, 52 (05) : 379 - 393
  • [3] Magnetic and thermodynamic properties of GaAs quantum dot confined by parabolic-inverse square plus gaussian potential
    Kirak, M.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2021, 536 (536)
  • [4] Effect of temperature on magnetic susceptibility and thermodynamic properties of an asymmetric quantum dot in tilted magnetic field
    Khordad, R.
    MODERN PHYSICS LETTERS B, 2015, 29 (23):
  • [5] Optical properties of cylindrical quantum dots with diluted magnetic semiconductors structure
    Babanli, A. M.
    Sabyrov, Vepa
    LOW TEMPERATURE PHYSICS, 2022, 48 (10) : 825 - 831
  • [6] Effect of magnetic field on linear and nonlinear optical properties in a parabolic cylindrical quantum dot
    Khordad R.
    Khordad, R. (rezakh2025@yahoo.com), 1600, Optical Society of India (42): : 83 - 91
  • [7] Effect of Magnetic Field on Internal Energy and Entropy of a Parabolic Cylindrical Quantum Dot
    Khordad, R.
    Sadeghzadeh, M. A.
    Jahan-Abad, A. Mohamadian
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 59 (05) : 655 - 660
  • [8] The magnetic properties of a quantum dot in a magnetic field
    Shaer, Ayham
    Elsaid, Mohammad K.
    Elhasan, Musa
    TURKISH JOURNAL OF PHYSICS, 2016, 40 (03): : 209 - 218
  • [9] Controllable spin polarization in a DMS quantum dot
    Kim, N
    Kang, TW
    Kim, H
    MODERN PHYSICS LETTERS B, 2005, 19 (27): : 1419 - 1427
  • [10] Thermodynamic properties of a monolayer transition metal dichalcogenide (TMD) quantum dot in the presence of magnetic field
    Diffo, T., V
    Fotue, A. J.
    Kenfack, S. C.
    Tsiaze, R. M. Keumo
    Baloitcha, E.
    Hounkonnou, M. N.
    PHYSICS LETTERS A, 2021, 385