Constraining the Excessive Aggregation of Non-Fullerene Acceptor Molecules Enables Organic Solar Modules with the Efficiency >16%

被引:6
作者
Feng, Erming [1 ]
Zhang, Chujun [1 ]
Chang, Jianhui [1 ]
Zhao, Feixiang [2 ]
Hu, Bin [3 ,4 ]
Han, Yunfei [5 ]
Sha, Mengzhen [6 ]
Li, Hengyue [1 ]
Du, Xiao-Jing [1 ]
Long, Caoyu [1 ]
Ding, Yang [1 ]
Yang, Zhong-Jian [1 ]
Yin, Hang [6 ]
Luo, Qun [5 ]
Ma, Chang-Qi [5 ]
Lu, Guanghao [3 ,4 ]
Ma, Zaifei [2 ]
Hao, Xiao-Tao [6 ]
Yang, Junliang [1 ]
机构
[1] Cent South Univ, Sch Phys, Hunan Key Lab Supermicrostruct & Ultrafast Proc, Changsha 410083, Peoples R China
[2] Donghua Univ, Coll Mat Sci & Engn, Ctr Adv Low Dimens Mat, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[3] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Xian 710054, Peoples R China
[4] Xi An Jiao Tong Univ, Sch Chem, Xian 710054, Peoples R China
[5] Chinese Acad Sci, Printable Elect Res Ctr, Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Peoples R China
[6] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
organic solar cells; doctor-blading; non-fullereneacceptor; aggregation; module; CELLS;
D O I
10.1021/acsnano.4c06931
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Translating high-performance organic solar cell (OSC) materials from spin-coating to scalable processing is imperative for advancing organic photovoltaics. For bridging the gap between laboratory research and industrialization, it is essential to understand the structural formation dynamics within the photoactive layer during printing processes. In this study, two typical printing-compatible solvents in the doctor-blading process are employed to explore the intricate mechanisms governing the thin-film formation in the state-of-the-art photovoltaic system PM6:L8-BO. Our findings highlight the synergistic influence of both the donor polymer PM6 and the solvent with a high boiling point on the structural dynamics of L8-BO within the photoactive layer, significantly influencing its morphological properties. The optimized processing strategy effectively suppresses the excessive aggregation of L8-BO during the slow drying process in doctor-blading, enhancing thin-film crystallization with preferential molecular orientation. These improvements facilitate more efficient charge transport, suppress thin-film defects and charge recombination, and finally enhance the upscaling potential. Consequently, the optimized PM6:L8-BO OSCs demonstrate power conversion efficiencies of 18.42% in small-area devices (0.064 cm(2)) and 16.02% in modules (11.70 cm(2)), respectively. Overall, this research provides valuable insights into the interplay among thin-film formation kinetics, structure dynamics, and device performance in scalable processing.
引用
收藏
页码:28026 / 28037
页数:12
相关论文
共 70 条
[11]   Achieving 19% Power Conversion Efficiency in Planar-Mixed Heterojunction Organic Solar Cells Using a Pseudosymmetric Electron Acceptor [J].
Gao, Wei ;
Qi, Feng ;
Peng, Zhengxing ;
Lin, Francis R. ;
Jiang, Kui ;
Zhong, Cheng ;
Kaminsky, Werner ;
Guan, Zhiqiang ;
Lee, Chun-Sing ;
Marks, Tobin J. ;
Ade, Harald ;
Jen, Alex K-Y .
ADVANCED MATERIALS, 2022, 34 (32)
[12]   Fully doctor -bladed efficient organic solar cells processed under ambient condition [J].
Guo, Xiaotong ;
Li, Hengyue ;
Han, Yunfei ;
Yang, Yu ;
Luo, Qun ;
Ma, Chang-Qi ;
Yang, Junliang .
ORGANIC ELECTRONICS, 2020, 82
[13]   12.42% Monolithic 25.42 cm2 Flexible Organic Solar Cells Enabled by an Amorphous ITO-Modified Metal Grid Electrode [J].
Han, Yunfei ;
Hu, Zishou ;
Zha, Wusong ;
Chen, Xiaolian ;
Yin, Li ;
Guo, Jingbo ;
Li, Zhiyun ;
Luo, Qun ;
Su, Wenming ;
Ma, Chang-Qi .
ADVANCED MATERIALS, 2022, 34 (17)
[14]   Manipulating Vertical Phase Separation Enables Pseudoplanar Heterojunction Organic Solar Cells Over 19% Efficiency via Ternary Polymerization [J].
He, Dan ;
Zhou, Jixiang ;
Zhu, Yufan ;
Li, Yawen ;
Wang, Ke ;
Li, Jie ;
Zhang, Jianqi ;
Li, Bao ;
Lin, Yuze ;
He, Yuehui ;
Wang, Chunru ;
Zhao, Fuwen .
ADVANCED MATERIALS, 2024, 36 (05)
[15]   Non-Radiative Recombination Energy Losses in Non-Fullerene Organic Solar Cells [J].
He, Dan ;
Zhao, Fuwen ;
Wang, Chunru ;
Lin, Yuze .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (19)
[16]   Numerical Analysis in DFT and SCAPS-1D on the Influence of Different Charge Transport Layers of CsPbBr3 Perovskite Solar Cells [J].
Hossain, M. Khalid ;
Mohammed, Mustafa K. A. ;
Pandey, Rahul ;
Arnab, A. A. ;
Rubel, M. H. K. ;
Hossain, K. M. ;
Ali, Md Hasan ;
Rahman, Md. Ferdous ;
Bencherif, H. ;
Madan, Jaya ;
Islam, Md. Rasidul ;
Samajdar, D. P. ;
Bhattarai, Sagar .
ENERGY & FUELS, 2023, 37 (08) :6078-6098
[17]   Unlocking the Origins of Highly Reversible Lithium Storage and Stable Cycling in a Spinel High-Entropy Oxide Anode for Lithium-Ion Batteries [J].
Hou, Shisheng ;
Su, Lin ;
Wang, Shuai ;
Cui, Yujie ;
Cao, Junzhang ;
Min, Huihua ;
Bao, Jingze ;
Shen, Yanbin ;
Zhang, Qichong ;
Sun, Zhefei ;
Zhu, Chongyang ;
Chen, Jing ;
Zhang, Qiaobao ;
Xu, Feng .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (04)
[18]   Vertical Stratification Engineering for Organic Bulk-Heterojunction Devices [J].
Huang, Liqiang ;
Wang, Gang ;
Zhou, Weihua ;
Fu, Boyi ;
Cheng, Xiaofang ;
Zhang, Lifu ;
Yuan, Zhibo ;
Xiong, Sixing ;
Zhang, Lin ;
Xie, Yuanpeng ;
Zhang, Andong ;
Zhang, Youdi ;
Ma, Wei ;
Li, Weiwei ;
Zhou, Yinhua ;
Reichmanis, Elsa ;
Chen, Yiwang .
ACS NANO, 2018, 12 (05) :4440-4452
[19]   Bridging the thermodynamics and kinetics of temperature-induced morphology evolution in polymer/fullerene organic solar cell bulk heterojunction [J].
Levitsky, Artem ;
Schneider, Sebastian Alexander ;
Rabkin, Eugen ;
Toney, Michael F. ;
Frey, Gitti L. .
MATERIALS HORIZONS, 2021, 8 (04) :1272-1285
[20]   Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells [J].
Li, Chao ;
Zhou, Jiadong ;
Song, Jiali ;
Xu, Jinqiu ;
Zhang, Huotian ;
Zhang, Xuning ;
Guo, Jing ;
Zhu, Lei ;
Wei, Donghui ;
Han, Guangchao ;
Min, Jie ;
Zhang, Yuan ;
Xie, Zengqi ;
Yi, Yuanping ;
Yan, He ;
Gao, Feng ;
Liu, Feng ;
Sun, Yanming .
NATURE ENERGY, 2021, 6 (06) :605-613