Advances of surface modification to alleviate oxidative stress-induced valve degeneration

被引:0
作者
Peng, Pai [1 ]
Hu, Xinman [1 ]
Wang, Beiduo [1 ]
Wang, Xuelong [1 ]
Li, Shifen [1 ]
Kang, Yongyuan [1 ]
Dong, Xiaofei [1 ,2 ]
Yang, Xiayan [3 ]
Yu, Qifeng [3 ]
Gao, Changyou [1 ,2 ,4 ]
机构
[1] MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou
[2] Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing
[3] Shanghai NewMed Medical Technology Co., Ltd, Pudong New Area, Shanghai
[4] The State Key Laboratory of Transvascular Implantation Devices, Zhejiang University, Hangzhou
来源
Smart Materials in Medicine | 2024年 / 5卷 / 03期
基金
中国国家自然科学基金;
关键词
Extracellular matrix; Oxidative stress; Surface modification; Valve degeneration; Valvular heart disease;
D O I
10.1016/j.smaim.2024.08.003
中图分类号
学科分类号
摘要
Valvular heart disease (VHD) is a significant public health threat, with heart valve replacement surgery being the standard treatment for severe cases. Despite of advancements in artificial heart valves, their longevity remains limited due to in vivo degeneration. In consequence, there is an urgent need for effective methods to enhance the durability of artificial heart valves. Because oxidative stress (OS) is a key driving factor contributing to the failure of cardiovascular implants, this review focuses on how OS plays a critical role in heart valve degeneration, and its relationship with four major physiological mechanisms: extracellular matrix (ECM) degradation, immune response, thrombosis and lipid metabolism. By highlighting OS as a potential therapeutic target, we explore surface modification strategies that incorporate these fundamental mechanisms, refer to passive approaches including OS elimination, immunosuppression, blocking surface-degradation active groups, and anticoagulation, and active approaches such as regulating biological function recovery, and surface endothelial remodeling. These strategies aim to delay or reverse artificial valves degeneration via combining with the perspective of OS regulation, ultimately extending the prognosis period after heart valve replacement surgeries. © 2024 The Authors
引用
收藏
页码:409 / 424
页数:15
相关论文
共 135 条
  • [51] Velho T.R., Pereira R.M., Fernandes F., Guerra N.C., Ferreira R., Nobre A., Bioprosthetic aortic valve degeneration: a review from a basic science perspective, Braz. J. Cardiovasc. Surg., 37, pp. 239-250, (2022)
  • [52] Siddiqui R.F., Abraham J.R., Butany J., Bioprosthetic heart valves: modes of failure, Histopathology, 55, pp. 135-144, (2009)
  • [53] Manji R.A., Lee W., Cooper D.K.C., Xenograft bioprosthetic heart valves: past, present and future, Int. J. Surg., 23, pp. 280-284, (2015)
  • [54] Senage T., Paul A., Le Tourneau T., Fellah-Hebia I., Vadori M., Bashir S., Galinanes M., Bottio T., Gerosa G., Evangelista A., Badano L.P., Nassi A., Costa C., Cesare G., Manji R.A., Cueff De Monchy C., Piriou N., Capoulade R., Serfaty J.M., Guimbretiere G., Dantan E., Ruiz-Majoral A., Coste Du Fou G., Leviatan Ben-Arye S., Govani L., Yehuda S., Bachar Abramovitch S., Amon R., Reuven E.M., Atiya-Nasagi Y., Yu H., Iop L., Casos K., Kuguel S.G., Blasco-Lucas A., Permanyer E., Sbraga F., Llatjos R
  • [55] Xue Y., Hilaire C.S., Hortells L., Phillippi J.A., Sant V., Sant S., Shape-specific nanoceria mitigate oxidative stress-induced calcification in primary human valvular interstitial cell culture, Cell. Mol. Bioeng., 10, pp. 483-500, (2017)
  • [56] Branchetti E., Sainger R., Poggio P., Grau J.B., Patterson-Fortin J., Bavaria J.E., Chorny M., Lai E., Gorman R.C., Levy R.J., Ferrari G., Antioxidant enzymes reduce dna damage and early activation of valvular interstitial cells in aortic valve sclerosis, Arterioscler, Thromb. Vasc. Biol., 33, pp. e66-e74, (2013)
  • [57] Kostyunin A.E., Yuzhalin A.E., Ovcharenko E.A., Kutikhin A.G., Development of calcific aortic valve disease: do we know enough for new clinical trials?, J. Mol. Cell. Cardiol., 132, pp. 189-209, (2019)
  • [58] Reustle A., Torzewski M., Role of p38 MAPK in atherosclerosis and aortic valve sclerosis, Int. J. Mol. Sci., 19, (2018)
  • [59] Zheng K.H., Tzolos E., Dweck M.R., Pathophysiology of aortic stenosis and future perspectives for medical therapy, Cardiol. Clin., 38, pp. 1-12, (2020)
  • [60] Akahori H., Tsujino T., Masuyama T., Ishihara M., Mechanisms of aortic stenosis, J. Cardiol., 71, pp. 215-220, (2018)