Advances of surface modification to alleviate oxidative stress-induced valve degeneration

被引:0
作者
Peng, Pai [1 ]
Hu, Xinman [1 ]
Wang, Beiduo [1 ]
Wang, Xuelong [1 ]
Li, Shifen [1 ]
Kang, Yongyuan [1 ]
Dong, Xiaofei [1 ,2 ]
Yang, Xiayan [3 ]
Yu, Qifeng [3 ]
Gao, Changyou [1 ,2 ,4 ]
机构
[1] MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou
[2] Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing
[3] Shanghai NewMed Medical Technology Co., Ltd, Pudong New Area, Shanghai
[4] The State Key Laboratory of Transvascular Implantation Devices, Zhejiang University, Hangzhou
来源
Smart Materials in Medicine | 2024年 / 5卷 / 03期
基金
中国国家自然科学基金;
关键词
Extracellular matrix; Oxidative stress; Surface modification; Valve degeneration; Valvular heart disease;
D O I
10.1016/j.smaim.2024.08.003
中图分类号
学科分类号
摘要
Valvular heart disease (VHD) is a significant public health threat, with heart valve replacement surgery being the standard treatment for severe cases. Despite of advancements in artificial heart valves, their longevity remains limited due to in vivo degeneration. In consequence, there is an urgent need for effective methods to enhance the durability of artificial heart valves. Because oxidative stress (OS) is a key driving factor contributing to the failure of cardiovascular implants, this review focuses on how OS plays a critical role in heart valve degeneration, and its relationship with four major physiological mechanisms: extracellular matrix (ECM) degradation, immune response, thrombosis and lipid metabolism. By highlighting OS as a potential therapeutic target, we explore surface modification strategies that incorporate these fundamental mechanisms, refer to passive approaches including OS elimination, immunosuppression, blocking surface-degradation active groups, and anticoagulation, and active approaches such as regulating biological function recovery, and surface endothelial remodeling. These strategies aim to delay or reverse artificial valves degeneration via combining with the perspective of OS regulation, ultimately extending the prognosis period after heart valve replacement surgeries. © 2024 The Authors
引用
收藏
页码:409 / 424
页数:15
相关论文
共 135 条
  • [1] Coffey S., Roberts-Thomson R., Brown A., Carapetis J., Chen M., Enriquez-Sarano M., Zuhlke L., Prendergast B.D., Global epidemiology of valvular heart disease, Nat. Rev. Cardiol., 18, pp. 853-864, (2021)
  • [2] Naso F., Gandaglia A., Different approaches to heart valve decellularization: a comprehensive overview of the past 30 years, Xenotransplantation, 25, (2018)
  • [3] d'Arcy J.L., Coffey S., Loudon M.A., Kennedy A., Pearson-Stuttard J., Birks J., Frangou E., Farmer A.J., Mant D., Wilson J., Myerson S.G., Prendergast B.D., Large-scale community echocardiographic screening reveals a major burden of undiagnosed valvular heart disease in older people: the OxVALVE population cohort study, Eur. Heart J., 37, pp. 3515-3522, (2016)
  • [4] Dziadzko V., Clavel M.A., Dziadzko M., Medina-Inojosa J.R., Michelena H., Maalouf J., Nkomo V., Thapa P., Enriquez-Sarano M., Outcome and undertreatment of mitral regurgitation: a community cohort study, Lancet, 391, pp. 960-969, (2018)
  • [5] Kapadia S.R., Leon M.B., Makkar R.R., Tuzcu E.M., Svensson L.G., Kodali S., Webb J.G., Mack M.J., Douglas P.S., Thourani V.H., Babaliaros V.C., Herrmann H.C., Szeto W.Y., Pichard A.D., Williams M.R., Fontana G.P., Miller D.C., Anderson W.N., Smith C.R., Akin J.J., Davidson M.J., 5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (Partner 1): a randomised controlled trial, Lancet, 385, pp. 2485-2491, (2015)
  • [6] Sugito S., Collins N., Strange G., Playford D., Pulmonary hypertension following mitral valve replacement: insights from the national echocardiography database of Australia, Heart Lung Circ., 30, (2021)
  • [7] Yacoub M.H., Takkenberg J.J.M., Will heart valve tissue engineering change the world?, Nat. Clin. Pract. Cardiovasc. Med., 2, pp. 60-61, (2005)
  • [8] Nishimura R.A., Otto C.M., Bonow R.O., Carabello B.A., Erwin J.P., Guyton R.A., O'Gara P.T., Ruiz C.E., Skubas N.J., Sorajja P., Sundt T.M., Thomas J.D., AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American college of cardiology/American heart association task force on practice guidelines, J. Am. Coll. Cardiol., 63, 2014, pp. e57-e185, (2014)
  • [9] Heidenreich P.A., Bozkurt B., Aguilar D., Allen L.A., Byun J.J., Colvin M.M., Deswal A., Drazner M.H., Dunlay S.M., Evers L.R., Fang J.C., Fedson S.E., Fonarow G.C., Hayek S.S., Hernandez A.F., Khazanie P., Kittleson M.M., Lee C.S., Link M.S., Milano C.A., Nnacheta L.C., Sandhu A.T., Stevenson L.W., Vardeny O., Vest A.R., Yancy C.W., AHA/ACC/HFSA guideline for the management of heart failure: a report of the American college of cardiology/American heart association joint committee on clinical p
  • [10] Matoq A., Shahanavaz S., Transcatheter pulmonary valve in congenital heart disease, Interv. Cardiol. Clin., 13, pp. 369-384, (2024)