Measurement research of line intensity and self-broadening coefficient for NH3 spectra in 4296-4302 cm-1

被引:0
|
作者
Long J.-X. [1 ]
Shao L. [1 ]
Zhang Y.-J. [2 ]
You K. [2 ]
He Y. [2 ]
Ye Q. [1 ]
Sun X.-Q. [1 ]
机构
[1] State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei
[2] National Engineering Research Center for Air Pollution and Greenhouse Gas Monitoring Technology and Equipment, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei
来源
Wuli Xuebao/Acta Physica Sinica | 2022年 / 71卷 / 16期
基金
中国国家自然科学基金;
关键词
ammonia; laser absorption spectroscopy; line intensity; self-broadening coefficient; TDLAS;
D O I
10.7498/APS.71.20220504
中图分类号
学科分类号
摘要
Spectral parameters of NH3 in a range of 4296-4302 cm-1 in the HITRAN database are different from the actual situation as they are derived from theoretical calculations. In order to correct the spectral parameters of NH3 in this range in HITRAN, tunable diode laser absorption spectroscopy (TDLAS) technology and metrological theory are used to measure the absorption spectrum high-purity NH3 in the range of 4296-4302 cm-1 at 2-10 Torr. The line intensity and self-broadening coefficient of the main absorption line of NH3 in this band are retrieved and their uncertainty are calculated by comprehensively considering main factors including pressure, temperature, optical path of gas cell, wavenumber and line shape fitting. The discrepancies between our measured line intensities and latest peer-measured results are within 20%. The biases between our self-broadening coefficients and the ones in HITRAN2020 are within 14%. Their uncertainties are in a range of the 0.63-2.7% and 0.77-5.4%, respectively, which are smaller than the uncertainty range of 10-20% in the HITRAN database. Some of the measured spectral parameters are not recorded in HITRAN. The experimental results in this work are of significant reference in supplementing and correcting the HITRAN spectral parameters of NH3 in the range of 4296-4302 cm-1 © 2022 中国物理学会 Chinese Physical Society.
引用
收藏
相关论文
共 25 条
  • [1] Kwak D, Lei Y, Maric R, Talanta, 204, (2019)
  • [2] Guo X, Zheng F, Li C, Yang X, Li N, Liu S, Wei J, Qiu X, He Q, Opt. Lasers Eng, 115, (2019)
  • [3] Bolshov M A, Kuritsyn Yu A, Romanovskii Yu V, Spectrochim. Acta B, 106, (2015)
  • [4] Du Z, Zhang S, Li J, Gao N, Tong K, Appl. Sci, 9, (2019)
  • [5] Kireev S V, Shnyrev S L, Laser Phys. Lett, 15, (2018)
  • [6] Gordon I E, Rothman L S, Hill C, Kochanov R V, Tan Y, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Drouin B J, Flaud J-M, Gamache R R, Hodges J T, Jacquemart D, Perevalov V I, Perrin A, Shine K P, Smith MA H, Tennyson J, Toon G C, Tran H, Tyuterev V G, Barbe A, Csaszar A G, Devi V M, Furtenbacher T, Harrison J J, Hartmann J-M, Jolly A, Johnson T J, Karman T, Kleiner I, Kyuberis A A, Loos J, Lyulin O M, Massie S T, Mikhailenko S N, Moazzen-Ahmadi N, Muller H S P, Naumenko O V, Nikitin
  • [7] Jacquinet-Husson N, Armante R, Scott N A, Chedin A, Crepeau L, Boutammine C, Bouhdaoui A, Crevoisier C, Capelle V, Boonne C, Poulet-Crovisier N, Barbe A, Chris Benner D, Boudon V, Brown L R, Buldyreva J, Campargue A, Coudert L H, Devi V M, Down M J, Drouin B J, Fayt A, Fittschen C, Flaud J-M, Gamache R R, Harrison J J, Hill C, Hodnebrog O, Hu S-M, Jacquemart D, Jolly A, Jimenez E, Lavrentieva N N, Liu A-W, Lodi L, Lyulin O M, Massie S T, Mikhailenko S, Muller H S P, Naumenko O V, Nikitin A, Nie
  • [8] Rothman L S, Gordon I E, Barber R J, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A, Tennyson J, J. Quant. Spectrosc. Ra, 111, (2010)
  • [9] Jia H, Zhao W, Cai T, Chen W, Zhang W, Gao X, J. Quant. Spectrosc. Ra, 110, (2009)
  • [10] Nie W, Kan R F, Xu Z Y, Yang C G, Chen B, Xia H H, Wei M, Chen X, Yao Lu, Li H, Fan X L, Hu J Y, Acta Phys. Sin, 66, (2017)