ESB-FL: Efficient and Secure Blockchain-Based Federated Learning With Fair Payment

被引:7
|
作者
Chen, Biwen [1 ,2 ,3 ]
Zeng, Honghong [1 ]
Xiang, Tao [1 ]
Guo, Shangwei [1 ]
Zhang, Tianwei [4 ]
Liu, Yang [4 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
[2] State Key Lab Cryptol, Beijing 100878, Peoples R China
[3] Guilin Univ Elect Technol, Guangxi Key Lab Trusted Software, Guilin 541004, Peoples R China
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Task analysis; Blockchains; Privacy; Data privacy; Computational modeling; Encryption; Training; Blockchain; fair payment; federated learning; function encryption; privacy protection; INFERENCE; INTERNET;
D O I
10.1109/TBDATA.2022.3177170
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) is a technique that enables multiple parties to collaboratively train a model without sharing raw private data, and it is ideal for smart healthcare. However, it raises new privacy concerns due to the risk of privacy-sensitive medical data leakage. It is not until recently that the privacy-preserving FL (PPFL) has been introduced as a solution to ensure the privacy of training processes. Unfortunately, most existing PPFL schemes are highly dependent on complex cryptographic mechanisms or fail to guarantee the accuracy of training models. Besides, there has been little research on the fairness of the payment procedure in the PPFL with incentive mechanisms. To address the above concerns, we first construct an efficient non-interactive designated decryptor function encryption (NDD-FE) scheme to protect the privacy of training data while maintaining high communication performance. We then propose a blockchain-based PPFL framework with fair payment for medical image detection, namely ESB-FL, by combining the NDD-FE and an elaborately designed blockchain. ESB-FL not only inherits the characteristics of the NDD-FE scheme, but it also ensures the interests of each participant. We finally conduct extensive security analysis and experiments to show that our new framework has enhanced security, good accuracy, and high efficiency.
引用
收藏
页码:761 / 774
页数:14
相关论文
共 50 条
  • [11] Privacy-preserving in Blockchain-based Federated Learning systems
    Sameera, K. M.
    Nicolazzo, Serena
    Arazzi, Marco
    Nocera, Antonino
    Rehiman, K. A. Rafidha
    Vinod, P.
    Conti, Mauro
    COMPUTER COMMUNICATIONS, 2024, 222 : 38 - 67
  • [12] Blockchain-Based Searchable Encryption Scheme With Fair Payment
    Yan, Xixi
    Yuan, Xiaohan
    Ye, Qing
    Tang, Yongli
    IEEE ACCESS, 2020, 8 : 109687 - 109706
  • [13] A Survey on Blockchain-Based Federated Learning
    Wu, Lang
    Ruan, Weijian
    Hu, Jinhui
    He, Yaobin
    Pau, Giovanni
    FUTURE INTERNET, 2023, 15 (12)
  • [14] Blockchain-based federated learning methodologies in smart environments
    Li, Dong
    Luo, Zai
    Cao, Bo
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2022, 25 (04): : 2585 - 2599
  • [15] BAFL: A Blockchain-Based Asynchronous Federated Learning Framework
    Feng, Lei
    Zhao, Yiqi
    Guo, Shaoyong
    Qiu, Xuesong
    Li, Wenjing
    Yu, Peng
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (05) : 1092 - 1103
  • [16] Secure verifiable aggregation for blockchain-based federated averaging
    Zhu, Saide
    Li, Ruinian
    Cai, Zhipeng
    Kim, Donghyun
    Seo, Daehee
    Li, Wei
    HIGH-CONFIDENCE COMPUTING, 2022, 2 (01):
  • [17] FL-MAB: Client Selection and Monetization for Blockchain-Based Federated Learning
    Batool, Zahra
    Zhang, Kaiwen
    Toews, Matthew
    37TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2022, : 299 - 307
  • [18] Secure Data Sharing in Federated Learning through Blockchain-Based Aggregation
    Liu, Bowen
    Tang, Qiang
    FUTURE INTERNET, 2024, 16 (04)
  • [19] OBFP: Optimized Blockchain-Based Fair Payment for Outsourcing Computations in Cloud Computing
    Lin, Chao
    He, Debiao
    Huang, Xinyi
    Choo, Kim-Kwang Raymond
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 3241 - 3253
  • [20] EFPB: Efficient Fair Payment Based on Blockchain for Outsourcing Services in Cloud Computing
    Zou, Xiang
    Zeng, Peng
    Cheng, Huajie
    IEEE ACCESS, 2023, 11 : 30118 - 30128