Adversarial Domain Adaptation Model Based on LDTW for Extreme Partial Transfer Fault Diagnosis of Rotating Machines

被引:2
作者
Xu, Xuefang [1 ,2 ]
Yang, Xu [3 ]
He, Changbo [4 ,5 ]
Shi, Peiming [3 ]
Hua, Changchun [3 ]
机构
[1] Yanshan Univ, Elect Engn, Qinhuangdao 066000, Peoples R China
[2] Univ South China, Minist Educ, Key Lab Adv Nucl Energy Design & Safety, Hengyang 421001, Peoples R China
[3] Yanshan Univ, Sch Elect Engn, Qinhuangdao 066000, Peoples R China
[4] Anhui Univ, Coll Elect Engn & Automat, Hefei 230601, Peoples R China
[5] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei 230601, Peoples R China
关键词
Bearing fault diagnosis; partial-domain adaptation (PDA); transfer learning;
D O I
10.1109/TIM.2024.3476708
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Domain adaptation (DA) models are widely used in the fault diagnosis of rotating machines under variable operating conditions, in which most of the existing models assume the same number of source- and target-domain categories, i.e., the same label space. However, in practice, the labeling space is inconsistent; even there is only one class of the same type of fault, the traditional DA and partial DA (PDA) models are hard to maintain high accuracy. To cope with this challenge, an adversarial DA model based on local dynamic time warping (LDTW) is proposed. The proposed model is divided into three steps: first, the signals are discriminated for similarity using LDTW. Second, a class balancing strategy is proposed to balance the target-domain categories on the basis of similarity. Third, by using a domain discriminator to reduce the domain differences between source and target domains, thus accomplishing knowledge migration between domains. In addition, by visualizing the features extracted from the convolutional layer of the proposed model, this article provides an interpretable illustration of migration. Experimental validation on three datasets shows that the diagnostic performance of the proposed model is superior to the existing PDA models.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Optimal Transport-Based Deep Domain Adaptation Approach for Fault Diagnosis of Rotating Machine
    Liu, Zhao-Hua
    Jiang, Lin-Bo
    Wei, Hua-Liang
    Chen, Lei
    Li, Xiao-Hua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71 : 13 - 13
  • [32] Multi-level weighted dynamic adversarial adaptation network for partial set cross-domain fault diagnosis
    Zhang, Yuteng
    Zhang, Hongliang
    Wang, Rui
    Chen, Bin
    Pan, Haiyang
    MEASUREMENT, 2023, 223
  • [33] Development of a domain adversarial fault diagnosis model for information poor variable refrigerant flow systems based on transfer learning
    Liu, Cun
    Xu, Yuanyi
    Chen, Huanxin
    Shi, Jingfeng
    He, Yuxuan
    Xing, Lu
    JOURNAL OF BUILDING ENGINEERING, 2025, 102
  • [34] An ensemble and shared selective adversarial network for partial domain fault diagnosis of machinery
    Liu, Xiaoyang
    Liu, Shulin
    Xiang, Jiawei
    Sun, Ruixue
    Wei, Yuan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 113
  • [35] A partial domain adaptation broad learning system for machinery fault diagnosis
    Qin, Aisong
    Hu, Qin
    Zhang, Qinghua
    Mao, Hanling
    MEASUREMENT, 2025, 243
  • [36] Mitigating Negative Transfer Learning in Source Free-Unsupervised Domain Adaptation for Rotating Machinery Fault Diagnosis
    Kumar, M. P. Pavan
    Tu, Zhe-Xiang
    Chen, Hsu-Chi
    Chen, Kun-Chih
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [37] Dynamic Distribution Adaptation Based Transfer Network for Cross Domain Bearing Fault Diagnosis
    Yixiao Liao
    Ruyi Huang
    Jipu Li
    Zhuyun Chen
    Weihua Li
    Chinese Journal of Mechanical Engineering, 2021, 34 (03) : 107 - 116
  • [38] Dynamic Distribution Adaptation Based Transfer Network for Cross Domain Bearing Fault Diagnosis
    Yixiao Liao
    Ruyi Huang
    Jipu Li
    Zhuyun Chen
    Weihua Li
    Chinese Journal of Mechanical Engineering, 2021, 34
  • [39] Gradient Alignment based Partial Domain Adaptation (GAPDA) using a domain knowledge filter for fault diagnosis of bearing
    Kim, Yong Chae
    Lee, Jinwook
    Kim, Taehun
    Baek, Jonghwa
    Ko, Jin Uk
    Ha Jung, Joon
    Youn, Byeng D.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 250
  • [40] Internal adversarial guided unsupervised multi-domain adaptation network for collaborative fault diagnosis of bearing
    Shao H.
    Chen X.
    Cao H.
    Jiang H.
    Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2023, 53 (07): : 1229 - 1240