High-quality multimodal MRI with simultaneous EEG using conductive ink and polymer-thick film nets

被引:0
作者
Cicero, Nicholas G. [1 ,2 ,3 ]
Fultz, Nina E. [2 ,5 ,6 ,7 ]
Jeong, Hongbae [3 ,5 ,6 ]
Williams, Stephanie D. [2 ,3 ]
Gomez, Daniel [3 ,5 ,6 ]
Setzer, Beverly [1 ,2 ,3 ]
Warbrick, Tracy [3 ,8 ]
Jaschke, Manfred [8 ]
Gupta, Ravij [6 ]
Lev, Michael [6 ]
Bonmassar, Giorgio [5 ,6 ]
Lewis, Laura D. [3 ,4 ,5 ]
机构
[1] Boston Univ, Grad Program Neurosci, Boston, MA 02215 USA
[2] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[3] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[4] MIT, Inst Med Engn & Sci, Cambridge, MA 02139 USA
[5] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Dept Radiol, Charlestown, MA 02114 USA
[6] Harvard Med Sch, Dept Radiol, Boston, MA 02115 USA
[7] Copenhagen Univ Hosp, Rigshosp, Neurobiol Res Unit, Copenhagen, Denmark
[8] Brain Prod GmbH, Gilching, Germany
关键词
multimodal imaging; electroencephalogram; MRI; artifacts; image quality; FMRI EXPERIMENTS; SAFETY; MODEL; SEGMENTATION; REGISTRATION; ELECTRODES; ACCURATE; IMAGES; CAP; SAR;
D O I
10.1088/1741-2552/ad8837
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Combining magnetic resonance imaging (MRI) and electroencephalography (EEG) provides a powerful tool for investigating brain function at varying spatial and temporal scales. Simultaneous acquisition of both modalities can provide unique information that a single modality alone cannot reveal. However, current simultaneous EEG-fMRI studies are limited to a small set of MRI sequences due to the image quality and safety limitations of commercially available MR-conditional EEG nets. We tested whether the Inknet2, a high-resistance polymer thick film based EEG net that uses conductive ink, could enable the acquisition of a variety of MR image modalities with minimal artifacts by reducing the radiofrequency-shielding caused by traditional MR-conditional nets. Approach. We first performed simulations to model the effect of the EEG nets on the magnetic field and image quality. We then performed phantom scans to test image quality with a conventional copper EEG net, with the new Inknet2, and without any EEG net. Finally, we scanned five human subjects at 3 Tesla (3 T) and three human subjects at 7 Tesla (7 T) with and without the Inknet2 to assess structural and functional MRI image quality. Main results. Across these simulations, phantom scans, and human studies, the Inknet2 induced fewer artifacts than the conventional net and produced image quality similar to scans with no net present. Significance. Our results demonstrate that high-quality structural and functional multimodal imaging across a variety of MRI pulse sequences at both 3 T and 7 T is achievable with an EEG net made with conductive ink and polymer thick film technology.
引用
收藏
页数:17
相关论文
共 87 条
  • [1] Multimodal Prediction of 3-and 12-Month Outcomes in ICU Patients with Acute Disorders of Consciousness
    Amiri, Moshgan
    Raimondo, Federico
    Fisher, Patrick M.
    Hribljan, Melita Cacic
    Sidaros, Annette
    Othman, Marwan H.
    Zibrandtsen, Ivan
    Bergdal, Ove
    Fabritius, Maria Louise
    Hansen, Adam Espe
    Hassager, Christian
    Hojgaard, Joan Lilja S.
    Jensen, Helene Ravnholt
    Knudsen, Niels Vendelbo
    Laursen, Emilie Lund
    Moller, Jacob E.
    Nersesjan, Vardan
    Nicolic, Miki
    Sigurdsson, Sigurdur Thor
    Sitt, Jacobo D.
    Solling, Christine
    Welling, Karen Lise
    Willumsen, Lisette M.
    Hauerberg, John
    Larsen, Vibeke Andree
    Fabricius, Martin Ejler
    Knudsen, Gitte Moos
    Kjaergaard, Jesper
    Moller, Kirsten
    Kondziella, Daniel
    [J]. NEUROCRITICAL CARE, 2024, 40 (02) : 718 - 733
  • [2] Multimodal prediction of residual consciousness in the intensive care unit: the CONNECT-ME study
    Amiri, Moshgan
    Fisher, Patrick M.
    Raimondo, Federico
    Sidaros, Annette
    Hribljan, Melita Cacic
    Othman, Marwan H.
    Zibrandtsen, Ivan
    Albrechtsen, Simon A.
    Bergdal, Ove
    Hansen, Adam Espe
    Hassager, Christian
    Hojgaard, Joan Lilja S.
    Jakobsen, Elisabeth Waldemar
    Jensen, Helene Ravnholt
    Moller, Jacob
    Nersesjan, Vardan
    Nikolic, Miki
    Olsen, Markus Harboe
    Sigurdsson, Sigurdur Thor
    Sitt, Jacobo D.
    Solling, Christine
    Welling, Karen Lise
    Willumsen, Lisette M.
    Hauerberg, John
    Larsen, Vibeke Andree
    Fabricius, Martin Ejler
    Knudsen, Gitte Moos
    Kjaergaard, Jesper
    Moller, Kirsten
    Kondziella, Daniel
    [J]. BRAIN, 2023, 146 (01) : 50 - 64
  • [3] Metallic electrodes and leads in simultaneous EEG-MRI: Specific absorption rate (SAR) simulation studies
    Angelone, LM
    Potthast, A
    Segonne, F
    Iwaki, S
    Belliveau, JW
    Bonmassar, G
    [J]. BIOELECTROMAGNETICS, 2004, 25 (04) : 285 - 295
  • [4] Numerical and Experimental Analysis of Radiofrequency-Induced Heating Versus Lead Conductivity During EEG-MRI at 3 T
    Atefi, Seyed Reza
    Serano, Peter
    Poulsen, Catherine
    Angelone, Leonardo M.
    Bonmassar, Giorgio
    [J]. IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2019, 61 (03) : 852 - 859
  • [5] FLAIR MRI biomarkers of the normal appearing brain matter are related to cognition
    Bahsoun, M-A
    Khan, M. U.
    Mitha, S.
    Ghazvanchahi, A.
    Khosravani, H.
    Maralani, P. Jabehdar
    Tardif, J-C
    Moody, A. R.
    Tyrrell, P. N.
    Khademi, A.
    [J]. NEUROIMAGE-CLINICAL, 2022, 34
  • [6] Balasubramanian Mukund, 2017, Neurodiagn J, V57, P69, DOI 10.1080/21646821.2017.1256722
  • [7] Ultra-High-Field MR Neuroimaging
    Balchandani, P.
    Naidich, T. P.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2015, 36 (07) : 1204 - 1215
  • [8] Biagi L., 2017, High Field Brain MRI, DOI [10.1007/978-3-319-44174-023, DOI 10.1007/978-3-319-44174-023]
  • [9] Robust machine learning segmentation for large-scale analysis of heterogeneous clinical brain MRI datasets
    Billot, Benjamin
    Magdamo, Colin
    Cheng, You
    Arnold, Steven E.
    Das, Sudeshna
    Iglesias, Juan Eugenio
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (09)
  • [10] Influence of EEG electrodes on the BOLD fMRI signal
    Bonmassar, G
    Hadjikhani, N
    Ives, JR
    Hinton, D
    Belliveau, JW
    [J]. HUMAN BRAIN MAPPING, 2001, 14 (02) : 108 - 115