Adsorption of per- and polyfluoroalkyl substances on biochar derived from municipal sewage sludge

被引:2
|
作者
School of Engineering, Brown University, Providence [1 ]
RI
02912, United States
不详 [2 ]
NJ
08520, United States
不详 [3 ]
MA
01060, United States
不详 [4 ]
MI
48109, United States
机构
来源
关键词
Activated carbon treatment - Catalytic cracking - Effluents - Ion exchange resins - Municipal solid waste - Sewage sludge - Wastewater treatment;
D O I
10.1016/j.chemosphere.2024.143331
中图分类号
学科分类号
摘要
Granular activated carbon (GAC) and ion exchange resin (IXR) are widely used as adsorbents to remove PFAS from drinking water sources and effluent waste streams. However, the high cost associated with GAC and IXR generation has motivated the development of less expensive adsorbents for treatment of PFAS-impacted water. Thus, the objective of this research was to create an economically viable and sustainable PFAS adsorbent from sewage sludge. Stepwise pyrolysis at temperatures from 300 °C to 1000 °C yielded biochars whose specific surface area (SSA) and porosity increased from 41 to 148 m2/g, and from 0.062 to 0.193 cm3/g, respectively. On a per organic char basis, the SSA of the biochar was as high as 1183 m2/g, which is comparable to commercially-available activated carbons. The adsorption of perfluorooctane sulfonic acid (PFOS) on sludge biochar increased with increasing pyrolysis temperature, which was positively correlated with increasing porosity and SSA. When 1000 °C processed biochar was tested with a mixture of eight PFAS, preferential adsorption of longer carbon chain-length species was observed, indicating the importance of PFAS hydrophobic interactions with the biochar and the availability of a wide range of mesopores. The adsorption of each PFAS was dependent upon both chain length and head group, with longer chain-length species exhibiting greater adsorption than shorter chain-length species, along with greater adsorption of species with sulfonic acid head groups compared to their chain length counterparts with carboxylic acid head groups. These findings demonstrate that biochar derived from municipal solid waste can serve as a cost-effective and sustainable adsorbent for the removal of PFOS and PFAS mixtures from source waters. The circular economy benefits and waste reduction potential associated with the use of sewage sludge-derived biochar supports the development of a viable sludge-derived biochar for the removal of PFAS from water. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [31] Bamboo-Derived Low-Cost Mesoporous Biochar for Efficient Removal of Per- and Polyfluoroalkyl Substances from Contaminated Water
    Ao, Wenya
    Mian, Md Manik
    Zhang, Qianxin
    Zhou, Ziming
    Deng, Shubo
    ACS ES&T WATER, 2024, 4 (06): : 2711 - 2720
  • [32] Soil washing for removal of per- and polyfluoroalkyl substances from investigation-derived waste
    Miceli, Justin
    Varghese, Juby R.
    Holsen, Thomas M.
    Crimi, Michelle
    REMEDIATION-THE JOURNAL OF ENVIRONMENTAL CLEANUP COSTS TECHNOLOGIES & TECHNIQUES, 2024, 34 (01):
  • [33] Comparing occurrence of per- and polyfluoroalkyl substances (PFAS) in municipal biosolids and industrial wastewater sludge: A City of Los Angeles study
    Otim, Ochan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 954
  • [34] Occurrence and Risks of Per- and Polyfluoroalkyl Substances in Shellfish
    Giffard, Nathan G.
    Gitlin, Saige A.
    Rardin, Marta
    Petali, Jonathan M.
    Chen, Celia Y.
    Romano, Megan E.
    CURRENT ENVIRONMENTAL HEALTH REPORTS, 2022, 9 (04) : 591 - 603
  • [35] Per- and Polyfluoroalkyl Substances (PFAS) in Street Sweepings
    Ahmadireskety, Atiye
    Da Silva, Bianca F.
    Robey, Nicole M.
    Douglas, Thomas E.
    Aufmuth, Joe
    Solo-Gabriele, Helena M.
    Yost, Richard A.
    Townsend, Timothy G.
    Bowden, John A.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (10) : 6069 - 6077
  • [36] Occurrence and Risks of Per- and Polyfluoroalkyl Substances in Shellfish
    Nathan G. Giffard
    Saige A. Gitlin
    Marta Rardin
    Jonathan M. Petali
    Celia Y. Chen
    Megan E. Romano
    Current Environmental Health Reports, 2022, 9 : 591 - 603
  • [37] Epigenetic changes by per- and polyfluoroalkyl substances (PFAS)
    Kim, Sujin
    Thapar, Isha
    Brooks, Bryan W.
    ENVIRONMENTAL POLLUTION, 2021, 279
  • [38] Occurrence of per- and polyfluoroalkyl substances in water: a review
    Wang, Yifei
    Kim, Juhee
    Huang, Ching-Hua
    Hawkins, Gary L.
    Li, Ke
    Chen, Yongsheng
    Huang, Qingguo
    ENVIRONMENTAL SCIENCE-WATER RESEARCH & TECHNOLOGY, 2022, 8 (06) : 1136 - 1151
  • [39] Binding of Per- and Polyfluoroalkyl Substances to β-Lactoglobulin from Bovine Milk
    Pham, P. Chi
    Taylor, Mackenzie
    Nguyen, Giang T. H.
    Beltran, Jeunesse
    Bennett, Jack L.
    Ho, Junming
    Donald, William A.
    CHEMICAL RESEARCH IN TOXICOLOGY, 2024, 37 (05) : 757 - 770
  • [40] Occurrence of per- and polyfluoroalkyl substances (PFAS) in municipal solid waste landfill leachates from western China
    Xingyao Huang
    Xiaoxiao Wei
    Huazu Liu
    Wei Li
    Dezhi Shi
    Shenhua Qian
    Wenjie Sun
    Dongbei Yue
    Xiaoming Wang
    Environmental Science and Pollution Research, 2022, 29 : 69588 - 69598