An efficient decoupled and dimension reduction scheme for quad-curl eigenvalue problem in balls and spherical shells

被引:0
作者
Jiang, Jiantao [1 ]
Zhang, Zhimin [2 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
中国国家自然科学基金;
关键词
Quad-curl eigenvalue problem; Spectral-Galerkin method; TE and TM modes; Error estimation; Spherical geometries; SPECTRAL-ELEMENT METHOD; FINITE-ELEMENTS; DISCRETE COMPACTNESS; GALERKIN METHOD; APPROXIMATION; EQUATIONS; EIGENFUNCTIONS; LOCALIZATION; OPERATOR;
D O I
10.1016/j.camwa.2024.10.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a spectral-Galerkin approximation for the quad-curl eigenvalue problem within spherical geometries. Utilizing vector spherical harmonics in conjunction with the Laplace-Beltrami operator, we decompose the quad-curl eigenvalue problem into two distinct categories of fourth-order equations: corresponding to the transverse electric (TE) and transverse magnetic (TM) modes. A thorough analysis is provided for the TE mode. The TM mode, however, is characterized by a system of coupled fourth-order equations that are subject to a divergence-free condition. We develop two separate sets of vector basis functions tailored for the coupled system in both solid spheres and spherical shells. Moreover, we design a parameterized technique aimed at eliminating spurious eigenpairs. Numerical examples are presented to demonstrate the high precision achieved by the proposed method. We also include graphs to illustrate the localization of the eigenfunctions. Furthermore, we employ Bessel functions to analyze the quad-curl problem, revealing the intrinsic connection between the eigenvalues and the zeros of combinations of Bessel functions.
引用
收藏
页码:454 / 480
页数:27
相关论文
共 53 条
  • [11] Nonconforming Maxwell Eigensolvers
    Brenner, Susanne C.
    Li, Fengyan
    Sung, Li-yeng
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2009, 40 (1-3) : 51 - 85
  • [12] Discontinuous Galerkin computation of the Maxwell eigenvalues on simplicial meshes
    Buffa, Annalisa
    Houston, Paul
    Perugia, Ilaria
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 204 (02) : 317 - 333
  • [13] Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements
    Buffa, Annalisa
    Ciarlet, Patrick, Jr.
    Jamelot, Erell
    [J]. NUMERISCHE MATHEMATIK, 2009, 113 (04) : 497 - 518
  • [14] Cakoni F, 2007, INVERSE PROBL IMAG, V1, P443
  • [15] The inverse electromagnetic scattering problem for anisotropic media
    Cakoni, Fioralba
    Colton, David
    Monk, Peter
    Sun, Jiguang
    [J]. INVERSE PROBLEMS, 2010, 26 (07)
  • [16] On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems
    Caorsi, S
    Fernandes, P
    Raffetto, M
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (02) : 580 - 607
  • [17] VISUALIZATION OF SPECIAL EIGENMODE SHAPES OF A VIBRATING ELLIPTIC MEMBRANE
    CHEN, G
    MORRIS, PJ
    ZHOU, JX
    [J]. SIAM REVIEW, 1994, 36 (03) : 453 - 469
  • [18] Computing electromagnetic eigenmodes with continuous Galerkin approximations
    Ciarlet, Patrick, Jr.
    Hechme, Grace
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 198 (02) : 358 - 365
  • [19] Finite element approximation of Maxwell eigenproblems on curved Lipschitz polyhedral domains
    Dello Russo, Anahi
    Alonso, Ana
    [J]. APPLIED NUMERICAL MATHEMATICS, 2009, 59 (08) : 1796 - 1822
  • [20] Geometrical Structure of Laplacian Eigenfunctions
    Grebenkov, D. S.
    Nguyen, B. -T.
    [J]. SIAM REVIEW, 2013, 55 (04) : 601 - 667