An efficient decoupled and dimension reduction scheme for quad-curl eigenvalue problem in balls and spherical shells

被引:0
作者
Jiang, Jiantao [1 ]
Zhang, Zhimin [2 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
中国国家自然科学基金;
关键词
Quad-curl eigenvalue problem; Spectral-Galerkin method; TE and TM modes; Error estimation; Spherical geometries; SPECTRAL-ELEMENT METHOD; FINITE-ELEMENTS; DISCRETE COMPACTNESS; GALERKIN METHOD; APPROXIMATION; EQUATIONS; EIGENFUNCTIONS; LOCALIZATION; OPERATOR;
D O I
10.1016/j.camwa.2024.10.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a spectral-Galerkin approximation for the quad-curl eigenvalue problem within spherical geometries. Utilizing vector spherical harmonics in conjunction with the Laplace-Beltrami operator, we decompose the quad-curl eigenvalue problem into two distinct categories of fourth-order equations: corresponding to the transverse electric (TE) and transverse magnetic (TM) modes. A thorough analysis is provided for the TE mode. The TM mode, however, is characterized by a system of coupled fourth-order equations that are subject to a divergence-free condition. We develop two separate sets of vector basis functions tailored for the coupled system in both solid spheres and spherical shells. Moreover, we design a parameterized technique aimed at eliminating spurious eigenpairs. Numerical examples are presented to demonstrate the high precision achieved by the proposed method. We also include graphs to illustrate the localization of the eigenfunctions. Furthermore, we employ Bessel functions to analyze the quad-curl problem, revealing the intrinsic connection between the eigenvalues and the zeros of combinations of Bessel functions.
引用
收藏
页码:454 / 480
页数:27
相关论文
共 53 条
  • [1] Ainsworth M., 2003, Numerical Mathematics and Advanced Applications, V219
  • [2] A Novel Spectral Approximation and Error Estimation for Transmission Eigenvalues in Spherical Domains
    An, Jing
    Tan, Ting
    Zhang, Zhimin
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (02)
  • [3] An Efficient Spectral-Galerkin Approximation and Error Analysis for Maxwell Transmission Eigenvalue Problems in Spherical Geometries
    An, Jing
    Zhang, Zhimin
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (01) : 157 - 181
  • [4] Multilevel preconditioned iterative eigensolvers for Maxwell eigenvalue problems
    Arbenz, P
    Geus, R
    [J]. APPLIED NUMERICAL MATHEMATICS, 2005, 54 (02) : 107 - 121
  • [5] Babuska I., 1991, Handbook of Numerical Analysis, VII, P641
  • [6] Barrera R. G., 1985, European Journal of Physics, V6, P287, DOI 10.1088/0143-0807/6/4/014
  • [7] Computational models of electromagnetic resonators: Analysis of edge element approximation
    Boffi, D
    Fernandes, P
    Gastaldi, L
    Perugia, I
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (04) : 1264 - 1290
  • [8] Boffi D, 2000, NUMER MATH, V87, P229, DOI 10.1007/S002110000182
  • [9] Convergence of Lagrange finite elements for the Maxwell eigenvalue problem in two dimensions
    Boffi, Daniele
    Guzman, Johnny
    Neilan, Michael
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (02) : 663 - 691
  • [10] Hodge Decomposition Methods for a Quad-Curl Problem on Planar Domains
    Brenner, Susanne C.
    Sun, Jiguang
    Sung, Li-yeng
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (2-3) : 495 - 513