Deep Multimodal Learning and Fusion Based Intelligent Fault Diagnosis Approach

被引:0
|
作者
Li H. [1 ]
Huang J. [1 ]
Huang J. [1 ]
Chai S. [1 ]
Zhao L. [1 ]
Xia Y. [1 ]
机构
[1] Key Laboratory of Complex System Intelligent Control and Decision, Beijing Institute of Technology, Beijing
基金
中国国家自然科学基金;
关键词
Deep learning; Fault diagnosis; Multimodal fused features; Multimodal heterogeneous data;
D O I
10.15918/j.jbit1004-0579.2021.017
中图分类号
学科分类号
摘要
Industrial Internet of Things (IoT) connecting society and industrial systems represents a tremendous and promising paradigm shift. With IoT, multimodal and heterogeneous data from industrial devices can be easily collected, and further analyzed to discover device maintenance and health related potential knowledge behind. IoT data-based fault diagnosis for industrial devices is very helpful to the sustainability and applicability of an IoT ecosystem. But how to efficiently use and fuse this multimodal heterogeneous data to realize intelligent fault diagnosis is still a challenge. In this paper, a novel Deep Multimodal Learning and Fusion (DMLF) based fault diagnosis method is proposed for addressing heterogeneous data from IoT environments where industrial devices coexist. First, a DMLF model is designed by combining a Convolution Neural Network (CNN) and Stacked Denoising Autoencoder (SDAE) together to capture more comprehensive fault knowledge and extract features from different modal data. Second, these multimodal features are seamlessly integrated at a fusion layer and the resulting fused features are further used to train a classifier for recognizing potential faults. Third, a two-stage training algorithm is proposed by combining supervised pre-training and fine-tuning to simplify the training process for deep structure models. A series of experiments are conducted over multimodal heterogeneous data from a gear device to verify our proposed fault diagnosis method. The experimental results show that our method outperforms the benchmarking ones in fault diagnosis accuracy. © 2021 Journal of Beijing Institute of Technology
引用
收藏
页码:172 / 185
页数:13
相关论文
共 50 条
  • [1] Deep Multimodal Learning and Fusion Based Intelligent Fault Diagnosis Approach
    Huifang Li
    Jianghang Huang
    Jingwei Huang
    Senchun Chai
    Leilei Zhao
    Yuanqing Xia
    JournalofBeijingInstituteofTechnology, 2021, 30 (02) : 172 - 185
  • [2] Intelligent Fault Diagnosis of Gearbox Based on Vibration and Current Signals: A Multimodal Deep Learning Approach
    Jiang, Guoqian
    Zhao, Jingyi
    Jia, Chenling
    He, Qun
    Xie, Ping
    Meng, Zong
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [3] Intelligent Fault Diagnosis of Hydraulic Systems Based on Multisensor Fusion and Deep Learning
    Jiang, Ruosong
    Yuan, Zhaohui
    Wang, Honghui
    Liang, Na
    Kang, Jian
    Fan, Zeming
    Yu, Xiaojun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [4] Hybrid multimodal fusion with deep learning for rolling bearing fault diagnosis
    Che, Changchang
    Wang, Huawei
    Ni, Xiaomei
    Lin, Ruiguan
    Measurement: Journal of the International Measurement Confederation, 2021, 173
  • [5] Hybrid multimodal fusion with deep learning for rolling bearing fault diagnosis
    Che, Changchang
    Wang, Huawei
    Ni, Xiaomei
    Lin, Ruiguan
    MEASUREMENT, 2021, 173
  • [6] Multi-channel data fusion and intelligent fault diagnosis based on deep learning
    Guo, Yiming
    Hu, Tao
    Zhou, Yifan
    Zhao, Kunkun
    Zhang, Zhisheng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (01)
  • [7] A Deep Learning Approach for Rolling Bearing Intelligent Fault Diagnosis
    Tan, Fusheng
    Mo, Mingqiao
    Li, Haonan
    Han, Xuefeng
    2024 9TH INTERNATIONAL CONFERENCE ON ELECTRONIC TECHNOLOGY AND INFORMATION SCIENCE, ICETIS 2024, 2024, : 364 - 369
  • [8] Intelligent Fault Diagnosis for Chemical Processes Using Deep Learning Multimodel Fusion
    Wang, Nan
    Yang, Fan
    Zhang, Ridong
    Gao, Furong
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (07) : 7121 - 7135
  • [9] A Multimodal Feature Fusion-Based Deep Learning Method for Online Fault Diagnosis of Rotating Machinery
    Zhou, Funa
    Hu, Po
    Yang, Shuai
    Wen, Chenglin
    SENSORS, 2018, 18 (10)
  • [10] Deep Learning Based Intelligent Industrial Fault Diagnosis Model
    Surendran, R.
    Khalaf, Osamah Ibrahim
    Romero, Carlos Andres Tavera
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (03): : 6323 - 6338