Ensemble Predictors: Possibilistic Combination of Conformal Predictors for Multivariate Time Series Classification

被引:3
作者
Campagner, Andrea [1 ]
Barandas, Marilia [2 ,3 ]
Folgado, Duarte [2 ]
Gamboa, Hugo [2 ]
Cabitza, Federico [1 ,4 ]
机构
[1] IRCCS Ist Ortoped Galeazzi, I-20161 Milan, Italy
[2] Assoc Fraunhofer Portugal Res, P-4200135 Porto, Portugal
[3] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Fis, Lab Instrumentacao Engn Biomed & Fis Radiacao LIBP, P-1099085 Caparica, Portugal
[4] Univ Milano Bicocca, Dept Informat Syst & Commun, I-20126 Milan, Italy
关键词
Time series analysis; Task analysis; Ensemble learning; Possibility theory; Focusing; Computational modeling; Benchmark testing; Conformal prediction (CP); ensemble learning; machine learning; multivariate time series; robustness; COMBINING P-VALUES;
D O I
10.1109/TPAMI.2024.3388097
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article we propose a conceptual framework to study ensembles of conformal predictors (CP), that we call Ensemble Predictors (EP). Our approach is inspired by the application of imprecise probabilities in information fusion. Based on the proposed framework, we study, for the first time in the literature, the theoretical properties of CP ensembles in a general setting, by focusing on simple and commonly used possibilistic combination rules. We also illustrate the applicability of the proposed methods in the setting of multivariate time-series classification, showing that these methods provide better performance (in terms of both robustness, conservativeness, accuracy and running time) than both standard classification algorithms and other combination rules proposed in the literature, on a large set of benchmarks from the UCR time series archive.
引用
收藏
页码:7205 / 7216
页数:12
相关论文
共 50 条
  • [1] Multilabel Classification With Multivariate Time Series Predictors
    Che, Yuezhang
    Zhu, Yunzhang
    Shen, Xiaotong
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 5696 - 5705
  • [2] XEM: An explainable-by-design ensemble method for multivariate time series classification
    Fauvel, Kevin
    Fromont, Elisa
    Masson, Veronique
    Faverdin, Philippe
    Termier, Alexandre
    DATA MINING AND KNOWLEDGE DISCOVERY, 2022, 36 (03) : 917 - 957
  • [3] XEM: An explainable-by-design ensemble method for multivariate time series classification
    Kevin Fauvel
    Élisa Fromont
    Véronique Masson
    Philippe Faverdin
    Alexandre Termier
    Data Mining and Knowledge Discovery, 2022, 36 : 917 - 957
  • [4] Combination of inductive mondrian conformal predictors
    Toccaceli, Paolo
    Gammerman, Alexander
    MACHINE LEARNING, 2019, 108 (03) : 489 - 510
  • [5] CONFORMAL PREDICTORS FOR ONLINE TRACK CLASSIFICATION
    Pekala, Michael J.
    Wang, I-Jeng
    Llorens, Ashley J.
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [6] Psychosocial predictors of metabolic instability in brittle diabetes - A multivariate time series analysis
    Brosig, B
    Leweke, F
    Milch, W
    Eckhard, M
    Reimer, C
    PSYCHOTHERAPIE PSYCHOSOMATIK MEDIZINISCHE PSYCHOLOGIE, 2001, 51 (06) : 232 - 238
  • [7] TimeStacking: An Improved Ensemble Learning Method for Continuous Time Series Classification
    Alves Ribeiro, Victor Henrique
    Reynoso-Meza, Gilberto
    PRODUCT LIFECYCLE MANAGEMENT: GREEN AND BLUE TECHNOLOGIES TO SUPPORT SMART AND SUSTAINABLE ORGANIZATIONS, PT II, 2022, 640 : 284 - 296
  • [8] Hardware-Friendly Delayed-Feedback Reservoir for Multivariate Time-Series Classification
    Ikeda, Sosei
    Awano, Hiromitsu
    Sato, Takashi
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2022, 41 (11) : 3650 - 3660
  • [9] An ensemble solution for multivariate time series clustering
    Vazquez, Iago
    Villar, Jose R.
    Sedano, Javier
    de la Cal, Enrique
    Simic, Svetlana
    NEUROCOMPUTING, 2021, 457 (457) : 182 - 192
  • [10] Alternative predictors in chaotic time series
    Alves, P. R. L.
    Duarte, L. G. S.
    da Mota, L. A. C. P.
    COMPUTER PHYSICS COMMUNICATIONS, 2017, 215 : 265 - 268