Hyperspectral Anomaly Detection via Anchor Generation

被引:0
作者
Mi, Yang [1 ]
Tu, Bing [2 ,3 ,4 ]
Chen, Yunyun [2 ,3 ,4 ]
Cao, Zhaolou [2 ,3 ,4 ]
Plaza, Antonio [5 ]
机构
[1] Hunan Inst Sci & Technol, Sch Informat Sci & Engn, Yueyang 414000, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Inst Opt & Elect, State Key Lab Cultivat Base Atmospher Optoelect De, Nanjing 210044, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Jiangsu Int Joint Lab Meteorol Photon & Optoelect, Nanjing 210044, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Jiangsu Engn Res Ctr Intelligent Optoelect Sensing, Nanjing 210044, Peoples R China
[5] Univ Extremadura, Escuela Politecn, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Caceres 10003, Spain
基金
中国国家自然科学基金;
关键词
Anomaly detection; Hyperspectral imaging; Clustering algorithms; Accuracy; Deep learning; Feature extraction; Information science; Image reconstruction; Gaussian distribution; Covariance matrices; Anchor generation; anchors; anomaly detection; hyperspectral image (HSI); integration strategies; local Mahalanobis distance (LMD); COLLABORATIVE REPRESENTATION; RX-ALGORITHM; NETWORK; MODEL;
D O I
10.1109/TIM.2024.3481541
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyperspectral anomaly detection stands out as a focal point within the realm of hyperspectral image (HSI) analysis. However, traditional anomaly detectors face challenges due to the high susceptibility of background pixels to anomaly contamination. Moreover, they often fall short in adequately leveraging the spectral and spatial information present in HSIs. In response, we propose a hyperspectral anomaly detection method employing Anchor Generation, which effectively addresses the aforementioned issues by enhancing the distinction between anomalous and background pixels. Firstly, we sort pixels by computing the Mahalanobis distance (MD) between them and the background, thereby acquiring information on the degree of anomalies. This aids in distinguishing abnormal pixels from background pixels. Secondly, we enhance background purity by merging pixels close to anomaly-free regions. Moreover, we design a local MD (LMD) algorithm to better extract spectral and spatial information from the HSI, facilitating better reflection of local features. Through the integration of anomaly detection results from global and two local regions using logicalor andand operations, we enhance the accuracy and robustness of anomaly detection.
引用
收藏
页数:14
相关论文
共 54 条
  • [21] Han YJ, 2009, IN C IND ENG ENG MAN, P213, DOI 10.1109/ICIEEM.2009.5344604
  • [22] Cluster-Memory Augmented Deep Autoencoder via Optimal Transportation for Hyperspectral Anomaly Detection
    Huyan, Ning
    Zhang, Xiangrong
    Quan, Dou
    Chanussot, Jocelyn
    Jiao, Licheng
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [23] Weakly Supervised Discriminative Learning With Spectral Constrained Generative Adversarial Network for Hyperspectral Anomaly Detection
    Jiang, Tao
    Xie, Weiying
    Li, Yunsong
    Lei, Jie
    Du, Qian
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (11) : 6504 - 6517
  • [24] A systematic review on hyperspectral imaging technology with a machine and deep learning methodology for agricultural applications
    Khan, Atiya
    Vibhute, Amol D.
    Mali, Shankar
    Patil, C. H.
    [J]. ECOLOGICAL INFORMATICS, 2022, 69
  • [25] Kim KS, 2013, I SYMP CONSUM ELECTR, P259
  • [26] Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery
    Kwon, H
    Nasrabadi, NM
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (02): : 388 - 397
  • [27] Hyperspectral Anomaly Detection by the Use of Background Joint Sparse Representation
    Li, Jiayi
    Zhang, Hongyan
    Zhang, Liangpei
    Ma, Li
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2523 - 2533
  • [28] Spectral Difference Guided Graph Attention Autoencoder for Hyperspectral Anomaly Detection
    Li, Kun
    Ling, Qiang
    Wang, Yingqian
    Cai, Yaoming
    Qin, Yao
    Lin, Zaiping
    An, Wei
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [29] Transferred Deep Learning for Anomaly Detection in Hyperspectral Imagery
    Li, Wei
    Wu, Guodong
    Du, Qian
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (05) : 597 - 601
  • [30] Collaborative Representation for Hyperspectral Anomaly Detection
    Li, Wei
    Du, Qian
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (03): : 1463 - 1474