Hyperspectral Anomaly Detection via Anchor Generation

被引:0
作者
Mi, Yang [1 ]
Tu, Bing [2 ,3 ,4 ]
Chen, Yunyun [2 ,3 ,4 ]
Cao, Zhaolou [2 ,3 ,4 ]
Plaza, Antonio [5 ]
机构
[1] Hunan Inst Sci & Technol, Sch Informat Sci & Engn, Yueyang 414000, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Inst Opt & Elect, State Key Lab Cultivat Base Atmospher Optoelect De, Nanjing 210044, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Jiangsu Int Joint Lab Meteorol Photon & Optoelect, Nanjing 210044, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Jiangsu Engn Res Ctr Intelligent Optoelect Sensing, Nanjing 210044, Peoples R China
[5] Univ Extremadura, Escuela Politecn, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Caceres 10003, Spain
基金
中国国家自然科学基金;
关键词
Anomaly detection; Hyperspectral imaging; Clustering algorithms; Accuracy; Deep learning; Feature extraction; Information science; Image reconstruction; Gaussian distribution; Covariance matrices; Anchor generation; anchors; anomaly detection; hyperspectral image (HSI); integration strategies; local Mahalanobis distance (LMD); COLLABORATIVE REPRESENTATION; RX-ALGORITHM; NETWORK; MODEL;
D O I
10.1109/TIM.2024.3481541
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyperspectral anomaly detection stands out as a focal point within the realm of hyperspectral image (HSI) analysis. However, traditional anomaly detectors face challenges due to the high susceptibility of background pixels to anomaly contamination. Moreover, they often fall short in adequately leveraging the spectral and spatial information present in HSIs. In response, we propose a hyperspectral anomaly detection method employing Anchor Generation, which effectively addresses the aforementioned issues by enhancing the distinction between anomalous and background pixels. Firstly, we sort pixels by computing the Mahalanobis distance (MD) between them and the background, thereby acquiring information on the degree of anomalies. This aids in distinguishing abnormal pixels from background pixels. Secondly, we enhance background purity by merging pixels close to anomaly-free regions. Moreover, we design a local MD (LMD) algorithm to better extract spectral and spatial information from the HSI, facilitating better reflection of local features. Through the integration of anomaly detection results from global and two local regions using logicalor andand operations, we enhance the accuracy and robustness of anomaly detection.
引用
收藏
页数:14
相关论文
共 54 条
  • [1] A support vector method for anomaly detection in hyperspectral imagery
    Banerjee, Amit
    Burlina, Philippe
    Diehl, Chris
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (08): : 2282 - 2291
  • [2] Bi YH, 2015, PROC CVPR IEEE, P2339, DOI 10.1109/CVPR.2015.7298847
  • [3] Hyperspectral Remote Sensing Data Analysis and Future Challenges
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Camps-Valls, Gustavo
    Scheunders, Paul
    Nasrabadi, Nasser M.
    Chanussot, Jocelyn
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) : 6 - 36
  • [4] Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Dobigeon, Nicolas
    Parente, Mario
    Du, Qian
    Gader, Paul
    Chanussot, Jocelyn
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) : 354 - 379
  • [5] Visual function in patients with cone-rod dystrophy (CRD) associated with mutations in the ABCA4 (ABCR) gene
    Birch, DG
    Peters, AY
    Locke, KL
    Spencer, R
    Megarity, CF
    Travis, GH
    [J]. EXPERIMENTAL EYE RESEARCH, 2001, 73 (06) : 877 - 886
  • [6] Hyperspectral imaging: a novel approach for plant root phenotyping
    Bodner, Gernot
    Nakhforoosh, Alireza
    Arnold, Thomas
    Leitner, Daniel
    [J]. PLANT METHODS, 2018, 14
  • [7] Hyperspectral REE (Rare Earth Element) Mapping of Outcrops-Applications for Neodymium Detection
    Boesche, Nina Kristine
    Rogass, Christian
    Lubitz, Christin
    Brell, Maximilian
    Herrmann, Sabrina
    Mielke, Christian
    Tonn, Sabine
    Appelt, Oona
    Altenberger, Uwe
    Kaufmann, Hermann
    [J]. REMOTE SENSING, 2015, 7 (05) : 5160 - 5186
  • [8] An Effective Evaluation Tool for Hyperspectral Target Detection: 3D Receiver Operating Characteristic Curve Analysis
    Chang, Chein-, I
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (06): : 5131 - 5153
  • [9] Simultaneous Joint Sparsity Model for Target Detection in Hyperspectral Imagery
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (04) : 676 - 680
  • [10] Total Variation and Sparsity Regularized Decomposition Model With Union Dictionary for Hyperspectral Anomaly Detection
    Cheng, Tongkai
    Wang, Bin
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (02): : 1472 - 1486