Mathematical modelling and numerical bifurcation analysis of inbreeding and interdisciplinarity dynamics in academia

被引:0
|
作者
Mazzoleni, Stefano [1 ]
Russo, Lucia [2 ]
Giannino, Francesco [1 ]
Toraldo, Gerardo [3 ]
Siettos, Constantinos [4 ]
机构
[1] Laboratory of Applied Ecology and System Dynamics, Dipartimento di Agraria, Universitá degli Studi di Napoli Federico II, Naples, Italy
[2] Institute of Science and Technology for Energy and Sustainable Mobility (STEMS), Consiglio Nazionale delle Ricerche, Naples, Italy
[3] Dipartimento di Matematica e Fisica, Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy
[4] Dipartimento di Matematica e Applicazioni Renato Caccioppoli, Università degli Studi di Napoli Federico II, Naples, Italy
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We address a mathematical model to approximate in a coarse qualitative the interaction between inbreeding-lobbying and interdisciplinarity in academia and perform a one and two-parameter numerical bifurcation analysis to analyse its dynamics. Disciplinary diversity is a necessary condition for the development of interdisciplinarity, which is being recognized today as the key to establish a vibrant academic environment with bigger potential for breakthroughs/innovation in research and technology. However, the interaction of several factors including institutional policies, and behavioural attitudes put significant barriers on advancing interdisciplinarity. A cognitive rigidity may rise due to reactive academic lobby behaviours favouring inbreeding. The proposed model consists of four coupled non-linear Ordinary Differential Equations simulating the interaction between certain types of academic behaviour and the rate of knowledge advancement which is related to the level of disciplinary diversity. The effect of a control policy that inhibits inbreeding-lobbying is also investigated. The numerical bifurcation analysis reveals a rich nonlinear behaviour including multistability, sustained oscillations, limit points of limit cycles, homoclinic bifurcations as well as codimension-two bifurcations and in particular Bogdanov–Takens and Bautin bifurcations. © 2020 Elsevier B.V.
引用
收藏
相关论文
共 50 条
  • [31] Mathematical modelling for variations of inbreeding populations fitness with single and polygenic traits
    Sun, Shuhao
    Klebaner, Fima
    Tian, Tianhai
    BMC GENOMICS, 2017, 18
  • [32] Etna flank dynamics: A sensitivity analysis by numerical modelling
    Apuani, T.
    Corazzato, C.
    VOLCANIC ROCK MECHANICS: ROCK MECHANICS AND GEO-ENGINEERING IN VOLCANIC ENVIRONMENTS, 2010, : 151 - 157
  • [33] Numerical continuation of the solution at bifurcation points of mathematical models
    Krasnikov S.D.
    Kuznetsov E.B.
    Mathematical Models and Computer Simulations, 2010, 2 (4) : 482 - 492
  • [34] Mathematical and numerical modelling of limestone dissolution
    Matsubara, Hitoshi
    Yamada, Tomonori
    ENVIRONMENTAL GEOTECHNICS, 2022, 9 (05): : 274 - 285
  • [35] MATHEMATICAL AND NUMERICAL MODELLING OF PIEZOELECTRIC SENSORS
    Imperiale, Sebastien
    Joly, Patrick
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (04): : 875 - 909
  • [36] Mathematical modelling and the numerical analysis of a nonstationary flow around the deck of a ship
    Lifanov, IK
    Setukha, AV
    Tsvetinsky, YG
    Zhelannikov, AI
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 1997, 12 (03) : 255 - 269
  • [37] Mathematical modelling, analysis and numerical simulation of social media addiction and depression
    Ali, Abu Safyan
    Javeed, Shumaila
    Faiz, Zeshan
    Baleanu, Dumitru
    PLOS ONE, 2024, 19 (03):
  • [38] Mathematical modelling and the numerical analysis of a nonstationary flow around the deck of a ship
    N. E. Zhukovskiy AF Eng. Academy, Moscow 125190, Russia
    Russ J Numer Anal Math Modell, 3 (255-269):
  • [39] Mathematical modelling, numerical analysis and damage of dams subjected to hydrodynamic pressure
    Moghaddam, Abdolvahid Haghighi
    Mazaheri, Hamid
    Bidgoli, Mahmood Rabani
    OCEAN ENGINEERING, 2022, 253
  • [40] Structure-controlled bifurcation in mathematical modelling of fibre spinning
    Ziabicki, A.
    Jarecki, L.
    ARCHIVES OF MECHANICS, 2006, 58 (4-5): : 459 - 475