Multi-Source Information-Based Bearing Fault Diagnosis Using Multi-Branch Selective Fusion Deep Residual Network

被引:2
作者
Xiong, Shoucong [1 ]
Zhang, Leping [1 ]
Yang, Yingxin [1 ]
Zhou, Hongdi [2 ]
Zhang, Leilei [3 ]
机构
[1] Jiangxi Univ Sci & Technol, Sch Energy & Mech Engn, Nanchang 330013, Peoples R China
[2] Hubei Univ Technol, Sch Mech Engn, Wuhan 430068, Peoples R China
[3] Moutai Inst, Renhuai 564507, Peoples R China
基金
中国国家自然科学基金;
关键词
bearing fault diagnosis; deep learning; residual network; multi-source heterogeneous information;
D O I
10.3390/s24206581
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Rolling bearing is the core component of industrial machines, but it is difficult for common single signal source-based fault diagnosis methods to ensure reliable results since sensor signals are vulnerable to the pollution of background noises and the attenuation of transmitted information. Recently, multi-source information-based fault diagnosis methods have become popular, but the information redundancy between multiple signals is a tough problem that will negatively impact the representational capacity of deep learning algorithms and the precision of fault diagnosis methods. Besides that, the characteristics of various signals are actually different, but this problem was usually omitted by researchers, and it has potential to further improve the diagnosing performance by adaptively adjusting the feature extraction process for every input signal source. Aimed at solving the above problems, a novel model for bearing fault diagnosis called multi-branch selective fusion deep residual network is proposed in this paper. The model adopts a multi-branch structure design to enable every input signal source to have a unique feature processing channel, avoiding the information of multiple signal sources blindly coupled by convolution kernels. And in each branch, different convolution kernel sizes are assigned according to the characteristics of every input signal, fully digging the precious fault components on respective information sources. Lastly, the dropout technique is used to randomly throw out some activated neurons, alleviating the redundancy and enhancing the quality of the multiscale features extracted from different signals. The proposed method was experimentally compared with other intelligent methods on two authoritative public bearing datasets, and the experimental results prove the feasibility and superiority of the proposed model.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] A multi-scale collaborative fusion residual neural network-based approach for bearing fault diagnosis
    Qian, Chen
    Gao, Jun
    Shao, Xing
    Wang, Cuixiang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (04)
  • [22] A novel framework for motor bearing fault diagnosis based on multi-transformation domain and multi-source data*
    Xue, Yipeng
    Wen, Chuanbo
    Wang, Zidong
    Liu, Weibo
    Chen, Guochu
    KNOWLEDGE-BASED SYSTEMS, 2024, 283
  • [23] Fault zone diagnosis of three-terminal hybrid UHVDC transmission lines based on multi-mode decomposition and multi-branch parallel residual network
    Chen, Shilong
    Li, Guohui
    Bi, Guihong
    Bao, Tongyu
    Zhang, Zirui
    Luo, Linglin
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2024, 44 (10): : 140 - 147and178
  • [24] Discrimination of Single- and Multi-Source Corona Discharges using Deep Residual Network
    Borghei, Moein
    Ghassemi, Mona
    2021 IEEE ELECTRIC SHIP TECHNOLOGIES SYMPOSIUM (ESTS), 2021,
  • [25] TCN-MBMAResNet: a novel fault diagnosis method for small marine rolling bearings based on time convolutional neural network in tandem with multi-branch residual network
    Li, Yuanjiang
    Yang, Zhenyu
    Zhang, Shuo
    Mao, Runze
    Ye, Linchang
    Liu, Yun
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (02)
  • [26] Train bearing fault diagnosis based on multi-sensor data fusion and dual-scale residual network
    He, Deqiang
    Lao, Zhenpeng
    Jin, Zhenzhen
    He, Changfu
    Shan, Sheng
    Miao, Jian
    NONLINEAR DYNAMICS, 2023, 111 (16) : 14901 - 14924
  • [27] Train bearing fault diagnosis based on multi-sensor data fusion and dual-scale residual network
    Deqiang He
    Zhenpeng Lao
    Zhenzhen Jin
    Changfu He
    Sheng Shan
    Jian Miao
    Nonlinear Dynamics, 2023, 111 : 14901 - 14924
  • [28] A Deep Neural Network-Based Feature Fusion for Bearing Fault Diagnosis
    Hoang, Duy Tang
    Tran, Xuan Toa
    Van, Mien
    Kang, Hee Jun
    SENSORS, 2021, 21 (01) : 1 - 13
  • [29] MgNet: A fault diagnosis approach for multi-bearing system based on auxiliary bearing and multi-granularity information fusion
    Deng, Jin
    Liu, Han
    Fang, Hairui
    Shao, Siyu
    Wang, Dong
    Hou, Yimin
    Chen, Dongsheng
    Tang, Mingcong
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 193
  • [30] An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis
    Huang, Wenyi
    Cheng, Junsheng
    Yang, Yu
    Guo, Gaoyuan
    NEUROCOMPUTING, 2019, 359 : 77 - 92