Greenhouse gas emissions and net energy production of dark fermentation from food waste followed by anaerobic digestion

被引:2
|
作者
Lee, Jae-Young [1 ]
Sim, Young-Bo [1 ]
Jung, Ju-Hyeong [2 ]
Pandey, Ashutosh Kumar [1 ]
Kyung, Daeseung [3 ]
Kim, Sang-Hyoun [1 ]
机构
[1] Yonsei Univ, Dept Civil & Environm Engn, Seoul 03722, South Korea
[2] Kunsan Natl Univ, Dept Environm Engn, Gunsan 54150, South Korea
[3] Univ Ulsan, Sch Civil & Environm Engn, Ulsan 44610, South Korea
基金
新加坡国家研究基金会;
关键词
Life cycle assessment (LCA); Food waste; Combined dark fermentation and anaerobic digestion system; Resource recovery; Low-carbon hydrogen; LIFE-CYCLE ASSESSMENT; HYDROGEN-PRODUCTION; MICROALGAE; SYSTEM; IMPACT;
D O I
10.1016/j.energy.2024.133559
中图分类号
O414.1 [热力学];
学科分类号
摘要
There are diverse estimations regarding the carbon reduction effects of alternative hydrogen production technologies. This study assessed the greenhouse gas (GHG) emissions and energy balance of a two-stage process combining dark fermentative hydrogen production and anaerobic digestion from food waste using the cradle-togate life cycle assessment (LCA). The system boundary included collection and transportation, pretreatment and feedstock storage, dark fermentation, H2 purification, anaerobic digestion and heat and power generation and the estimated GHG emission was compared with a single anaerobic digestion of food waste. GHG emission of the biohydrogen production was estimated as 2.48 kg CO2-eq per kg H2 without considering avoided emissions from heat and power generation. The environmental impacts were majorly influenced by electricity use. The net energy ratio of the two-stage process was calculated to be 8.18, confirming a net energy gain and the potential GHG emission avoidance for electricity and heat use. Given that the single-stage anaerobic digestion of 16 tons of food waste is replaced by the two-stage dark fermentation process, 76.6 kg CO2-eq would be avoided. Sensitivity analysis revealed that energy-saving strategies are the most sensitive factors for achieving positive net energy production and low global warming potential.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Effect of temperature on biogas production from food waste through anaerobic digestion
    Paramaguru, G.
    Kannan, M.
    Senthilkumar, N.
    Lawrence, P.
    DESALINATION AND WATER TREATMENT, 2017, 85 : 68 - 72
  • [32] The anaerobic digestion process of biogas production from food waste: Prospects and constraints
    Pramanik S.K.
    Suja F.B.
    Zain S.M.
    Pramanik B.K.
    Bioresource Technology Reports, 2019, 8
  • [33] Hydrolase Production via Food Waste Fermentation and Its Application to Enhance Anaerobic Digestion of Sewage Sludge
    Zhang, Xuedong
    Wang, Ganghui
    Dong, Jian
    Chen, Min
    He, Yanhua
    Liu, He
    Li, Yajie
    Liu, Hongbo
    FERMENTATION-BASEL, 2023, 9 (06):
  • [34] Biogas production from food waste via anaerobic digestion with wood chips
    Oh, Jeong-Ik
    Lee, Jechan
    Lin, Kun-Yi Andrew
    Kwon, Eilhann E.
    Tsang, Yiu Fai
    ENERGY & ENVIRONMENT, 2018, 29 (08) : 1365 - 1372
  • [35] Enhancement of hydrogen production and energy recovery through electro-fermentation from the dark fermentation effluent of food waste
    Jia, Xuan
    Li, Mingxiao
    Wang, Yong
    Wu, Yanan
    Zhu, Lin
    Wang, Xue
    Zhao, Yujiao
    ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY, 2020, 1
  • [36] Biohythane production from marine macroalgae Sargassum sp coupling dark fermentation and anaerobic digestion
    Costa, Jose C.
    Oliveira, Joao V.
    Pereira, Maria A.
    Alves, Maria M.
    Abreu, Angela A.
    BIORESOURCE TECHNOLOGY, 2015, 190 : 251 - 256
  • [37] Bio-Hydrogen Production from Food Waste through Anaerobic Fermentation
    Godday, Osuagwu Chiemeriwo
    Levi, Osuagwu Uchechukwu
    Pariatamby, Agamuthu
    SAINS MALAYSIANA, 2014, 43 (12): : 1927 - 1936
  • [38] Production of Biogas by Anaerobic Digestion of Food waste and Process Simulation
    Baky, Md. Abdullah Hil
    Khan, Muhammad Nazmul Hassan
    Kader, Md. Faisal
    Chowdhury, Habibullah Amin
    PROCEEDINGS OF THE ASME 8TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2014, VOL 2, 2014,
  • [39] Bioelectrochemical enhancement of methane production in anaerobic digestion of food waste
    Choi, Jae-Min
    Lee, Chae-Young
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (04) : 2081 - 2090
  • [40] Anaerobic Co-digestion of Food Waste for Biohydrogen Production
    Jamil, Zadariana
    Yunus, Nurul Azwa Mohd
    MohamadAnnuar, Mohamad Suffian
    Ibrahim, Shaliza
    2013 IEEE BUSINESS ENGINEERING AND INDUSTRIAL APPLICATIONS COLLOQUIUM (BEIAC 2013), 2013, : 284 - 289