Design space exploration of neural network accelerator based on transfer learning

被引:0
作者
Wu Y. [1 ]
Zhi T. [2 ]
Song X. [2 ]
Li X. [1 ]
机构
[1] School of Computer Science, University of Science and Technology of China, Hefei
[2] State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing
基金
中国国家自然科学基金;
关键词
design space exploration (DSE); multi-task learning; neural network accelerator; transfer learning;
D O I
10.3772/j.issn.1006-6748.2023.04.009
中图分类号
学科分类号
摘要
With the increasing demand of computational power in artificial intelligence (AI) algorithms, dedicated accelerators have become a necessity. However, the complexity of hardware architectures, vast design search space, and complex tasks of accelerators have posed significant challenges. Traditional search methods can become prohibitively slow if the search space continues to be expanded. A design space exploration (DSE) method is proposed based on transfer learning, which reduces the time for repeated training and uses multi-task models for different tasks on the same processor. The proposed method accurately predicts the latency and energy consumption associated with neural network accelerator design parameters, enabling faster identification of optimal outcomes compared with traditional methods. And compared with other DSE methods by using multilayer perceptron (MLP), the required training time is shorter. Comparative experiments with other methods demonstrate that the proposed method improves the efficiency of DSE without compromising the accuracy of the results. © 2023 Inst. of Scientific and Technical Information of China. All rights reserved.
引用
收藏
页码:416 / 426
页数:10
相关论文
共 50 条
  • [31] Transfer Learning Based Deep Neural Network for Detecting Artefacts in Endoscopic Images
    Natarajan, Kirthika
    Balusamy, Sargunam
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2022, 13 (08) : 633 - 641
  • [32] Research on GRU Neural Network Satellite Traffic Prediction Based on Transfer Learning
    Ning Li
    Lang Hu
    Zhong-Liang Deng
    Tong Su
    Jiang-Wang Liu
    Wireless Personal Communications, 2021, 118 : 815 - 827
  • [33] Plant Taxonomy In Hainan Based On Deep Convolutional Neural Network And Transfer Learning
    Liu, Wei
    Feng, Wenlong
    Huang, Mengxing
    Han, Guilai
    Lin, Jialun
    2020 IEEE 19TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2020), 2020, : 1462 - 1467
  • [34] Neural Network-Based Transfer Learning of Manipulator Inverse Displacement Analysis
    Tang, Houcheng
    Notash, Leila
    JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2021, 13 (03):
  • [35] Texture Image Recognition Based on Deep Convolutional Neural Network and Transfer Learning
    Wang J.
    Fan Y.
    Li Z.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (05): : 701 - 710
  • [36] Eye state recognition based on deep integrated neural network and transfer learning
    Zhao, Lei
    Wang, Zengcai
    Zhang, Guoxin
    Qi, Yazhou
    Wang, Xiaojin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (15) : 19415 - 19438
  • [37] Research on GRU Neural Network Satellite Traffic Prediction Based on Transfer Learning
    Li, Ning
    Hu, Lang
    Deng, Zhong-Liang
    Su, Tong
    Liu, Jiang-Wang
    WIRELESS PERSONAL COMMUNICATIONS, 2021, 118 (01) : 815 - 827
  • [38] Deep Neural Network for Emotion Recognition Based on Meta-Transfer Learning
    Tang, Hengyao
    Jiang, Guosong
    Wang, Qingdong
    IEEE ACCESS, 2022, 10 : 78114 - 78122
  • [39] Internal multiple suppression with convolutional neural network-based transfer learning
    Liu, Xiaozhou
    Hu, Tianyue
    Liu, Tao
    Wei, Zhefeng
    Xiao, Yanjun
    Xie, Fei
    Duan, Wensheng
    Cui, Yongfu
    Peng, Gengxin
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2023, 20 (01) : 145 - 158
  • [40] Denoising Method for Microseismic Signals with Convolutional Neural Network Based on Transfer Learning
    Xuegui Li
    Shuo Feng
    Yuantao Guo
    Hanyang Li
    Yingjie Zhou
    International Journal of Computational Intelligence Systems, 16