Design space exploration of neural network accelerator based on transfer learning

被引:0
作者
Wu Y. [1 ]
Zhi T. [2 ]
Song X. [2 ]
Li X. [1 ]
机构
[1] School of Computer Science, University of Science and Technology of China, Hefei
[2] State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing
基金
中国国家自然科学基金;
关键词
design space exploration (DSE); multi-task learning; neural network accelerator; transfer learning;
D O I
10.3772/j.issn.1006-6748.2023.04.009
中图分类号
学科分类号
摘要
With the increasing demand of computational power in artificial intelligence (AI) algorithms, dedicated accelerators have become a necessity. However, the complexity of hardware architectures, vast design search space, and complex tasks of accelerators have posed significant challenges. Traditional search methods can become prohibitively slow if the search space continues to be expanded. A design space exploration (DSE) method is proposed based on transfer learning, which reduces the time for repeated training and uses multi-task models for different tasks on the same processor. The proposed method accurately predicts the latency and energy consumption associated with neural network accelerator design parameters, enabling faster identification of optimal outcomes compared with traditional methods. And compared with other DSE methods by using multilayer perceptron (MLP), the required training time is shorter. Comparative experiments with other methods demonstrate that the proposed method improves the efficiency of DSE without compromising the accuracy of the results. © 2023 Inst. of Scientific and Technical Information of China. All rights reserved.
引用
收藏
页码:416 / 426
页数:10
相关论文
共 50 条
  • [21] Application of Convolutional Neural Network Based on Transfer Learning for Garbage Classification
    Cao, Li
    Xiang, Wei
    PROCEEDINGS OF 2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2020), 2020, : 1032 - 1036
  • [22] Transfer learning of recurrent neural network-based plasticity models
    Heidenreich, Julian N.
    Bonatti, Colin
    Mohr, Dirk
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2024, 125 (01)
  • [23] Weather Image Recognition Based on Convolutional Neural Network and Transfer Learning
    Gao, Zunhai
    Qiu, Yuzhan
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, NETWORK SECURITY AND COMMUNICATION TECHNOLOGY, CNSCT 2024, 2024, : 631 - 638
  • [24] Individual Cow Recognition Based on Convolution Neural Network and Transfer Learning
    Xing Yongxin
    Wu Biqiao
    Wu Songping
    Wang Tianyi
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (16)
  • [25] Waste image classification based on transfer learning and convolutional neural network
    Zhang, Qiang
    Yang, Qifan
    Zhang, Xujuan
    Bao, Qiang
    Su, Jinqi
    Liu, Xueyan
    WASTE MANAGEMENT, 2021, 135 (135) : 150 - 157
  • [26] Milling force prediction model based on transfer learning and neural network
    Wang, Juncheng
    Zou, Bin
    Liu, Mingfang
    Li, Yishang
    Ding, Hongjian
    Xue, Kai
    JOURNAL OF INTELLIGENT MANUFACTURING, 2021, 32 (04) : 947 - 956
  • [27] Spectral transfer-learning-based metasurface design assisted by complex-valued deep neural network
    Xu, Yi
    Li, Fu
    Gu, Jianqiang
    Bi, Zhiwei
    Cao, Bing
    Yang, Quanlong
    Han, Jiaguang
    Hu, Qinghua
    Zhang, Weili
    ADVANCED PHOTONICS NEXUS, 2024, 3 (02):
  • [28] A new multi-fidelity surrogate modelling method for engineering design based on neural network and transfer learning
    Li, Mushi
    Liu, Zhao
    Huang, Li
    Zhu, Ping
    ENGINEERING COMPUTATIONS, 2022, 39 (06) : 2209 - 2230
  • [29] Face Recognition Based on Full Convolutional Neural Network Based on Transfer Learning Model
    Fan, Zhongkui
    Guan, Ye-peng
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2021, 18 (04) : 1395 - 1409
  • [30] A Transfer Learning Framework for High-Accurate Cross-Workload Design Space Exploration of CPU
    Wang, Duo
    Yan, Mingyu
    Teng, Yihan
    Han, Dengke
    Dang, Haoran
    Ye, Xiaochun
    Fan, Dongrui
    2023 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN, ICCAD, 2023,