Source-Free Image-Text Matching via Uncertainty-Aware Learning

被引:0
|
作者
Tian, Mengxiao [1 ,2 ]
Yang, Shuo [3 ]
Wu, Xinxiao [1 ,2 ]
Jia, Yunde [3 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China
[2] Shenzhen MSU BIT Univ, Guangdong Prov Lab Machine Percept & Intelligent C, Shenzhen 518172, Peoples R China
[3] Shenzhen MSU BIT Univ, Guangdong Prov Lab Machine Percept & Intelligent C, Shenzhen 518172, Peoples R China
关键词
Adaptation models; Uncertainty; Noise measurement; Data models; Training; Noise; Visualization; Measurement uncertainty; Computational modeling; Testing; Image-text matching; source-free adaptation; uncertainty-aware learning;
D O I
10.1109/LSP.2024.3488521
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
When applying a trained image-text matching model to a new scenario, the performance may largely degrade due to domain shift, which makes it impractical in real-world applications. In this paper, we make the first attempt on adapting the image-text matching model well-trained on a labeled source domain to an unlabeled target domain in the absence of source data, namely, source-free image-text matching. This task is challenging since it has no direct access to the source data when learning to reduce the doma in shift. To address this challenge, we propose a simple yet effective method that introduces uncertainty-aware learning to generate high-quality pseudo-pairs of image and text for target adaptation. Specifically, starting with using the pre-trained source model to retrieve several top-ranked image-text pairs from the target domain as pseudo-pairs, we then model uncertainty of each pseudo-pair by calculating the variance of retrieved texts (resp. images) given the paired image (resp. text) as query, and finally incorporate the uncertainty into an objective function to down-weight noisy pseudo-pairs for better training, thereby enhancing adaptation. This uncertainty-aware training approach can be generally applied on all existing models. Extensive experiments on the COCO and Flickr30K datasets demonstrate the effectiveness of the proposed method.
引用
收藏
页码:3059 / 3063
页数:5
相关论文
共 50 条
  • [41] Team HUGE: Image-Text Matching via Hierarchical and Unified Graph Enhancing
    Li, Bo
    Wu, You
    Li, Zhixin
    PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 704 - 712
  • [42] Safe Learning for Uncertainty-Aware Planning via Interval MDP Abstraction
    Jiang, Jesse
    Zhao, Ye
    Coogan, Samuel
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 2641 - 2646
  • [43] Learning and Integrating Multi-Level Matching Features for Image-Text Retrieval
    Lan, Hong
    Zhang, Pufen
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 374 - 378
  • [44] Uncertainty-Aware Blind Image Quality Assessment in the Laboratory and Wild
    Zhang, Weixia
    Ma, Kede
    Zhai, Guangtao
    Yang, Xiaokang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3474 - 3486
  • [45] Fine-Grained Image-Text Retrieval via Discriminative Latent Space Learning
    Zheng, Min
    Wang, Wen
    Li, Qingyong
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 (28) : 643 - 647
  • [46] Hierarchical Knowledge-Based Graph Embedding Model for Image-Text Matching in IoTs
    Zhang, Lizong
    Li, Meng
    Yan, Ke
    Wang, Ruozhou
    Hui, Bei
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (12) : 9399 - 9409
  • [47] Uncertainty-Aware Face Embedding With Contrastive Learning for Open-Set Evaluation
    Ahn, Kyeongjin
    Lee, Seungeon
    Han, Sungwon
    Low, Cheng Yaw
    Cha, Meeyoung
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 7176 - 7186
  • [48] Towards Deconfounded Image-Text Matching with Causal Inference
    Li, Wenhui
    Su, Xinqi
    Song, Dan
    Wang, Lanjun
    Zhang, Kun
    Liu, An-An
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 6264 - 6273
  • [49] Generating counterfactual negative samples for image-text matching
    Su, Xinqi
    Song, Dan
    Li, Wenhui
    Ren, Tongwei
    Liu, An-An
    INFORMATION PROCESSING & MANAGEMENT, 2025, 62 (03)
  • [50] Plug-and-Play Regulators for Image-Text Matching
    Diao, Haiwen
    Zhang, Ying
    Liu, Wei
    Ruan, Xiang
    Lu, Huchuan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 2322 - 2334