UNesT: Local Spatial Representation Learning with Hierarchical Transformer for Efficient Medical Segmentation

被引:0
作者
Yu, Xin [1 ]
Yang, Qi [1 ]
Zhou, Yinchi [1 ]
Cai, Leon Y. [2 ]
Gao, Riqiang [1 ,3 ]
Lee, Ho Hin [1 ]
Li, Thomas [2 ]
Bao, Shunxing [4 ]
Xu, Zhoubing [3 ]
Lasko, Thomas A. [5 ]
Abramson, Richard G. [2 ,6 ]
Zhang, Zizhao [7 ]
Huo, Yuankai [1 ,4 ]
Landman, Bennett A. [1 ,2 ,4 ,5 ]
Tang, Yucheng [4 ,8 ]
机构
[1] Department of Computer Science, Vanderbilt University, Nashville,TN,37212, United States
[2] Department of Biomedical Engineering, Vanderbilt University, Nashville,TN,37212, United States
[3] Digital Technology and Innovation, Siemens Healthineers, Princeton,NJ,08540, United States
[4] Department of Electrical and Computer Engineering, Vanderbilt University, Nashville,TN,37212, United States
[5] Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville,TN,37235, United States
[6] Annalise-AI, Pty, Ltd.
[7] Google Cloud AI
[8] Nvidia Corporation, United States
来源
arXiv | 2022年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Image segmentation - Learning systems - Medical imaging
引用
收藏
相关论文
empty
未找到相关数据