Change Detection for High-resolution Remote Sensing Images Based on a Siamese Structured UNet3+Network

被引:0
|
作者
Liang, Chen [1 ,2 ]
Zhang, Yi [1 ,2 ]
Xu, Zongxia [1 ,2 ]
Yu, Yongxin [1 ,2 ]
Zhang, Zhenwei [3 ]
机构
[1] Beijing Inst Surveying & Mapping, 60 Nanlishi Rd, Beijing 100045, Peoples R China
[2] Beijing Key Lab Urban Spatial Informat Engn, 60 Nanlishi Rd, Beijing 100045, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Remote Sensing & Geomat Engn, 219 Ningliu Rd, Nanjing, Peoples R China
关键词
change detection; deep learning; UNet3+; Siamese;
D O I
10.18494/SAM5250
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The use of bi-temporal remote sensing images for detecting changes in land cover is an important means of obtaining surface change information, thus contributing to urban governance and ecological environment monitoring. In this article, we propose a deep learning model named Siam-UNet3+ for high-resolution remote sensing image change detection. This model integrates the full-scale skip connections and full-scale deep supervision of the network UNet3+, which can achieve the multi-scale feature fusion of remote sensing images, effectively avoiding the locality disadvantage of convolution operations. Different from UNet3+, Siam-UNet3+ has made major improvements, including the following: (1) incorporating a Siamese network in the encoder, which can process bi-temporal remote sensing images in parallel; (2) leveraging the residual module as the backbone, which can avoid gradient vanishing (or exploding) and model degradation problems; (3) adding a Triplet Attention module to the decoder, which can avoid information redundancy that may occur in full-scale skip connections and increase the ability to focus on changing patterns; and (4) designing a hybrid loss function consisting of focal loss and dice loss, which is more suitable for remote sensing image change detection tasks. In this study, we conducted change detection experiments using the publicly available LEVIR-CD dataset, as well as two local datasets in Beijing. Through comparative experiments with five other models and ablation experiments, the proposed model Siam-UNet3+ in this article demonstrated significant advantages and improvements in four evaluation metrics, namely, precision, recall, F1-score, and overall accuracy (OA), proving to have great potential in the application to high-resolution remote sensing image change detection tasks.
引用
收藏
页码:4409 / 4425
页数:18
相关论文
共 50 条
  • [41] AGCDetNet:An Attention-Guided Network for Building Change Detection in High-Resolution Remote Sensing Images
    Song, Kaiqiang
    Jiang, Jie
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 4816 - 4831
  • [42] ROBUST ROAD DETECTION ON HIGH-RESOLUTION REMOTE SENSING IMAGES WITH OCCLUSION BY A DUAL-DECODED UNET
    Wang, Rongfang
    Wei, Haojiang
    Wang, Anna
    Chen, Jia-Wei
    Huo, Chunlei
    Niu, Yi
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5716 - 5719
  • [43] Deep Siamese Networks Based Change Detection with Remote Sensing Images
    Yang, Le
    Chen, Yiming
    Song, Shiji
    Li, Fan
    Huang, Gao
    REMOTE SENSING, 2021, 13 (17)
  • [44] Global-aware siamese network for change detection on remote sensing images
    Zhang, Ruiqian
    Zhang, Hanchao
    Ning, Xiaogang
    Huang, Xiao
    Wang, Jiaming
    Cui, Wei
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 199 : 61 - 72
  • [45] A Semisupervised Siamese Network for Efficient Change Detection in Heterogeneous Remote Sensing Images
    Jiang, Xiao
    Li, Gang
    Zhang, Xiao-Ping
    He, You
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [46] Hyperboloid-Embedded Siamese Network for Change Detection in Remote Sensing Images
    Yang, Qian
    Zhang, Shujun
    Li, Jinsong
    Sun, Yukang
    Han, Qi
    Sun, Yuanyuan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 9240 - 9252
  • [47] AN UNSUPERVISED SIAMESE SUPERPIXEL-BASED NETWORK FOR CHANGE DETECTION IN HETEROGENEOUS REMOTE SENSING IMAGES
    Ji, Zhiyuan
    Wang, Xueqian
    Wang, Zhihao
    Li, Gang
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5451 - 5454
  • [48] Use of object-based Siamese neural network to build change detection from very high resolution remote-sensing images
    Liu X.
    Li M.
    Wang X.
    Zhang Z.
    National Remote Sensing Bulletin, 2024, 28 (02) : 437 - 454
  • [49] Dual Part Siamese Attention Convolution Network for Change detection in Bi-temporal High Resolution Remote Sensing Images
    Li Zongpu
    Bao Tengfei
    Xiao Zhiyun
    2024 16TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, ICMLC 2024, 2024, : 298 - 303
  • [50] A Siamese Network with a Multiscale Window-Based Transformer via an Adaptive Fusion Strategy for High-Resolution Remote Sensing Image Change Detection
    Tao, Chao
    Kuang, Dongsheng
    Wu, Kai
    Zhao, Xiaomei
    Zhao, Chunyan
    Du, Xin
    Zhang, Yunsheng
    REMOTE SENSING, 2023, 15 (09)