Geometric Scaling Law in Real Neuronal Networks

被引:1
作者
Zhang, Xin-Ya [1 ,2 ,3 ,4 ]
Moore, Jack Murdoch [1 ,2 ,3 ,4 ]
Ru, Xiaolei [1 ,2 ,3 ,4 ]
Yan, Gang [1 ,2 ,3 ,4 ,5 ]
机构
[1] Tongji Univ, MOE, Key Lab Adv Microstruct Mat, Shanghai 200092, Peoples R China
[2] Tongji Univ, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China
[3] Tongji Univ, Shanghai Res Inst Intelligent Autonomous Syst, MOE Frontiers Sci Ctr Intelligent Autonomous Syst, Natl Key Lab Autonomous Intelligent Unmanned Syst, Shanghai 201210, Peoples R China
[4] Tongji Univ, Shanghai Key Lab Intelligent Autonomous Syst, Shanghai 201210, Peoples R China
[5] Chinese Acad Sci, CAS Ctr Excellence Brain Sci & Intelligence Techn, Shanghai 200031, Peoples R China
基金
中国国家自然科学基金;
关键词
RICH-CLUB ORGANIZATION; BRAIN; MODELS; DISTRIBUTIONS; CRITICALITY; CONNECTIONS; SIMILARITY; PRINCIPLES; DYNAMICS;
D O I
10.1103/PhysRevLett.133.138401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the synapse-resolution connectomes of fruit flies across different developmental stages, revealing a consistent scaling law in neuronal connection probability relative to spatial distance. This power-law behavior significantly differs from the exponential distance rule previously observed in coarsegrained brain networks. We demonstrate that the geometric scaling law carries functional significance, aligning with the maximum entropy of information communication and the functional criticality balancing integration and segregation. Perturbing either the empirical probability model's parameters or its type results in the loss of these advantageous properties. Furthermore, we derive an explicit quantitative predictor for neuronal connectivity, incorporating only interneuronal distance and neurons' in and out degrees. Our findings establish a direct link between brain geometry and topology, shedding lights on the understanding of how the brain operates optimally within its confined space.
引用
收藏
页数:7
相关论文
共 71 条
  • [1] Spatially embedded recurrent neural networks reveal widespread links between structural and functional neuroscience findings
    Achterberg, Jascha
    Akarca, Danyal
    Strouse, D. J.
    Duncan, John
    Astle, Duncan E.
    [J]. NATURE MACHINE INTELLIGENCE, 2023, 5 (12) : 1369 - 1381
  • [2] Rich-club organization of the newborn human brain
    Ball, Gareth
    Aljabar, Paul
    Zebari, Sally
    Tusor, Nora
    Arichi, Tomoki
    Merchant, Nazakat
    Robinson, Emma C.
    Ogundipe, Enitan
    Rueckert, Daniel
    Edwards, A. David
    Counsell, Serena J.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (20) : 7456 - 7461
  • [3] Barabasi AL, 2016, NETWORK SCIENCE, P1
  • [4] Neuroscience Needs Network Science
    Barabasi, Daniel L.
    Bianconi, Ginestra
    Bullmore, Ed
    Burgess, Mark
    Chung, SueYeon
    Eliassi-Rad, Tina
    George, Dileep
    Kovacs, Istvan A.
    Makse, Hernan
    Nichols, Thomas E.
    Papadimitriou, Christos
    Sporns, Olaf
    Stachenfeld, Kim
    Toroczkai, Zoltan
    Towlson, Emma K.
    Zador, Anthony M.
    Zeng, Hongkui
    Barabasi, Albert-Laszlo
    Bernard, Amy
    Buzsaki, Gyorgy
    [J]. JOURNAL OF NEUROSCIENCE, 2023, 43 (34) : 5989 - 5995
  • [5] Small-World Brain Networks Revisited
    Bassett, Danielle S.
    Bullmore, Edward T.
    [J]. NEUROSCIENTIST, 2017, 23 (05) : 499 - 516
  • [6] The criticality hypothesis: how local cortical networks might optimize information processing
    Beggs, John M.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1864): : 329 - 343
  • [7] The modular and integrative functional architecture of the human brain
    Bertolero, Maxwell A.
    Yeo, B. T. Thomas
    D'Esposito, Mark
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (49) : E6798 - E6807
  • [8] Specificity and robustness of long-distance connections in weighted, interareal connectomes
    Betzel, Richard F.
    Bassett, Danielle S.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (21) : E4880 - E4889
  • [9] Generative models of the human connectome
    Betzel, Richard F.
    Avena-Koenigsberger, Andrea
    Goni, Joaquin
    He, Ye
    de Reus, Marcel A.
    Griffa, Alessandra
    Vertes, Petra E.
    Misic, Bratislav
    Thiran, Jean-Philippe
    Hagmann, Patric
    van den Heuvel, Martijn
    Zuo, Xi-Nian
    Bullmore, Edward T.
    Sporns, Olaf
    [J]. NEUROIMAGE, 2016, 124 : 1054 - 1064
  • [10] Fast unfolding of communities in large networks
    Blondel, Vincent D.
    Guillaume, Jean-Loup
    Lambiotte, Renaud
    Lefebvre, Etienne
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,