Optimal error estimates of a second-order fully decoupled finite element method for the nonstationary generalized Boussinesq model

被引:0
作者
Ding, Qianqian [1 ]
Hou, Yuanyuan [2 ]
He, Xiaoming [3 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
[2] Huzhou Univ, Sch Sci, Huzhou 313000, Peoples R China
[3] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Generalized Boussinesq equations; Fully decoupled method; Second-order scheme; Mixed element method; Optimal error estimates; NAVIER-STOKES; NATURAL-CONVECTION; PROJECTION METHODS; EQUATIONS; SCHEME;
D O I
10.1016/j.cam.2024.116001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop and analyze a fully decoupled finite element method for the non- stationary generalized Boussinesq equations, where the viscosity and thermal conductivity depend on the temperature. Based on some subtle implicit-explicit treatments for the nonlinear coupling terms, we develop a second-order in time, fully decoupled, linear and unconditionally energy stable scheme for solving this system. The unconditional stability of the fully discrete scheme with finite element approximation is proved. The optimal L-2-error estimates are analyzed for temperature-dependent thermal conductivity system. Numerical experiments are presented to illustrate the convergence, accuracy and applicability of the proposed numerical scheme.
引用
收藏
页数:15
相关论文
共 33 条
[1]   Stabilized finite element approximations for a generalized Boussinesq problem: A posteriori error analysis [J].
Allendes, Alejandro ;
Naranjo, Cesar ;
Otarola, Enrique .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 361
[2]  
Boffi D, 2013, Springer Series in Computational Mathematics, V44, DOI [DOI 10.1007/978-3-642-36519-5, 10.1007/978-3-642-36519-5]
[3]   ERROR ANALYSIS FOR FINITE-ELEMENT METHODS FOR STEADY NATURAL-CONVECTION PROBLEMS [J].
BOLAND, J ;
LAYTON, W .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1990, 11 (5-6) :449-483
[4]  
Brezzi F., 1991, SPRINGER SERIES COMP, V15, DOI 10. 1007/978-1-4612- 3172-1.
[5]   Unconditional stability of first and second orders implicit/explicit schemes for the natural convection equations [J].
Chen, Chuanjun ;
Zhang, Tong .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 139 :152-172
[6]  
DAVIS GD, 1983, INT J NUMER METH FL, V3, P249
[7]   A COUPLED PREDICTION SCHEME FOR SOLVING THE NAVIER-STOKES AND CONVECTION-DIFFUSION EQUATIONS [J].
Deteix, J. ;
Jendoubi, A. ;
Yakoubi, D. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) :2415-2439
[8]   DECOUPLED, LINEAR, AND ENERGY METHOD FOR THE CAHN-HILLIARD-NAVIER-STOKES-DARCY PHASE FIELD MODEL [J].
Gao, Yali ;
He, Xiaoming ;
Mei, Liquan ;
Yang, Xiaofeng .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (01) :B110-B137
[9]  
Getling A., 1999, Physics Today, V52, P59
[10]  
Girault V., 1986, FINITE ELEMENT METHO, DOI DOI 10.1007/978-3-642-61623-5