Pentaquark molecular states with hidden bottom and double strangeness

被引:0
|
作者
Song, Jing [1 ,2 ,3 ]
Duan, Man-Yu [2 ,3 ,4 ,5 ]
Roca, Luis [6 ]
Oset, Eulogio [2 ,3 ]
机构
[1] Beihang Univ, Sch Phys, Beijing 102206, Peoples R China
[2] Ctr Mixto Univ Valencia, CSIC Inst Invest Paterna, Dept Fis Teor, Valencia 46071, Spain
[3] Ctr Mixto Univ Valencia, CSIC Inst Invest Paterna, IFIC, Valencia 46071, Spain
[4] Zhengzhou Univ, Sch Phys, Zhengzhou 450001, Peoples R China
[5] Southeast Univ, Sch Phys, Nanjing 210094, Peoples R China
[6] Univ Murcia, Dept Fis, Murcia 30100, Spain
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 10期
基金
欧盟地平线“2020”; 中国博士后科学基金; 中国国家自然科学基金;
关键词
HEAVY BARYONS; EXCITED-STATES; GAUGE BOSON; MESON; SPECTROSCOPY;
D O I
10.1140/epjc/s10052-024-13435-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate the meson-baryon interaction in coupled channels with the quantum numbers of the pentaquarks Pbss\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{bss}$$\end{document} and Pbsss\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{bsss}$$\end{document}. The interaction is derived from an extension of the local hidden gauge approach to the heavy quark sector, which has demonstrated accurate results compared to experiments involving Omega b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{b}$$\end{document}, Xi b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Xi _{b}$$\end{document} states, and pentaquarks Pc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{c}$$\end{document} and Pcs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{cs}$$\end{document}. In our study, we identify several molecular states with small decay widths within the chosen set of coupled channels. The spin-parity (JP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J<^>P$$\end{document}) of these states is as follows: JP=12-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J<^>P={\frac{1}{2}}<^>-$$\end{document} for pseudoscalar-baryon (12+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{1}{2}}<^>+$$\end{document}) coupled channels, JP=32-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J<^>P={\frac{3}{2}}<^>-$$\end{document} for pseudoscalar-baryon (32+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{3}{2}}<^>+$$\end{document}) coupled channels, JP=12-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J<^>P={\frac{1}{2}}<^>-$$\end{document} and 32-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{3}{2}}<^>-$$\end{document} for vector-baryon (12+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{1}{2}}<^>+$$\end{document}) coupled channels, and JP=12-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J<^>P={\frac{1}{2}}<^>-$$\end{document}, 32-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{3}{2}}<^>-$$\end{document}, 52-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{5}{2}}<^>-$$\end{document} for vector-baryon (32+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{3}{2}}<^>+$$\end{document}) coupled channels. We search for the poles of these states and evaluate their couplings to the different channels.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] How to reveal the nature of three or more pentaquark states
    Xiao, C. W.
    Lu, J. X.
    Wu, J. J.
    Geng, L. S.
    PHYSICAL REVIEW D, 2020, 102 (05):
  • [32] A theoretical investigation on the spectroscopy of the exotic tetraquark and pentaquark states
    Pal, S.
    Bhattacharya, A.
    Chakrabarti, B.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (06):
  • [33] Quark spin structures of bottom-charmed threshold molecular states
    Voloshin, M. B.
    PHYSICAL REVIEW D, 2018, 98 (07)
  • [34] Mass spectra of double-bottom baryons
    Li, Zhen-Yu
    Yu, Guo-Liang
    Wang, Zhi-Gang
    Gu, Jian-Zhong
    Shen, Hong-Tao
    MODERN PHYSICS LETTERS A, 2023, 38 (8-9)
  • [35] Hidden-charm pentaquark state in Λb0 → J/ψpπ- decay
    Wang, En
    Chen, Hua-Xing
    Geng, Li-Sheng
    Li, De-Min
    Oset, Eulogio
    PHYSICAL REVIEW D, 2016, 93 (09)
  • [36] Probing hidden-charm decay properties of Pc states in a molecular scenario
    Wang, Guang-Juan
    Xiao, Li-Ye
    Chen, Rui
    Liu, Xiao-Hai
    Liu, Xiang
    Zhu, Shi-Lin
    PHYSICAL REVIEW D, 2020, 102 (03)
  • [37] Hidden-strange molecular states and the Nφ bound states via a QCD van der Waals force
    He, Jun
    Huang, Hongxia
    Chen, Dian-Yong
    Zhu, Xinmei
    PHYSICAL REVIEW D, 2018, 98 (09)
  • [38] Prediction of hidden charm strange molecular baryon states with heavy quark spin symmetry
    Xiao, C. W.
    Nieves, J.
    Oset, E.
    PHYSICS LETTERS B, 2019, 799
  • [39] The baryo-quarkonium picture for hidden-charm and bottom pentaquarks and LHCb Pc(4380) and Pc(4450) states
    Ferretti, J.
    Santopinto, E.
    Anwar, M. Naeem
    Bedolla, M. A.
    PHYSICS LETTERS B, 2019, 789 : 562 - 567
  • [40] Controllable tunnel coupling and molecular states in a graphene double quantum dot
    Wang, Lin-Jun
    Li, Hai-Ou
    Tu, Tao
    Cao, Gang
    Zhou, Cheng
    Hao, Xiao-Jie
    Su, Zhan
    Xiao, Ming
    Guo, Guang-Can
    Chang, Albert M.
    Guo, Guo-Ping
    APPLIED PHYSICS LETTERS, 2012, 100 (02)