Stretchable, self-adhesive, and conductive hemicellulose-based hydrogels as wearable strain sensors

被引:3
|
作者
Zhao, Lihui [1 ]
Luo, Banxin [3 ]
Gao, Shishuai [1 ,2 ]
Liu, Yupeng [1 ,2 ]
Lai, Chenhuan [2 ]
Zhang, Daihui [1 ,2 ]
Guan, Wenxian [3 ]
Wang, Chunpeng [1 ,2 ]
Chu, Fuxiang [1 ,2 ]
机构
[1] Chinese Acad Forestry, Inst Chem Ind Forest Prod, Natl Engn Lab Biomass Chem Utilizat,Key Lab Biomas, Key Lab Chem Engn Forest Prod Natl Forestry & Gras, Nanjing 210042, Jiangsu, Peoples R China
[2] Nanjing Forestry Univ, Coinnovat Ctr Efficient Proc & Utilizat Forest Res, Nanjing 210037, Jiangsu, Peoples R China
[3] Nanjing Univ Chinese Med, Nanjing Drum Tower Hosp, Drum Tower Clin Med Coll, Dept Gen Surg, Nanjing 210008, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogel; Hemicellulose; Sensor;
D O I
10.1016/j.ijbiomac.2024.137313
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Conductive hydrogels have recently gained impressive attention in flexible sensing. However, their low sensing limit and poor interface matching have raised great concern during the practical application. Therefore, incorporating excellent stretchability and adhesiveness into conductive hydrogel is highly desirable but still be a huge challenge. In this study, we synthesized composite hydrogels with desired properties by utilizing the synergistic role of hemicellulose (HC) and conductive two-dimensional material MXene. As a result, the synthesized hydrogels showed good self-adhesion (3.12 KPa on the skin), great stretchability (>1700 %), and satisfactory electrical conductivity. These multifunctional hydrogels operated as adaptable sensors, adeptly capturing the nuanced signals emanating from an array of human motions. They exhibited an expansive strain tolerance, swift reactivity, and an enhanced acuity in detecting even the slightest deformations (GF = 2.1). Our research provides new insights for creating stretchable, self-adhesive, and functional hydrogels for sensing applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Highly stretchable, robust, sensitive and wearable strain sensors based on mesh-structured conductive hydrogels
    Yang, Ruxue
    Tu, Zhantong
    Chen, Xiyue
    Wu, Xin
    Chemical Engineering Journal, 2024, 480
  • [32] A transparent, self-adhesive and fully recyclable conductive PVA based hydrogel for wearable strain sensor
    Zhang, Weiwei
    Dai, Leyu
    Sun, Tao
    Qin, Chuanxiang
    Wang, Jianjun
    Sun, Jun
    Dai, Lixing
    POLYMER, 2023, 283
  • [33] A strong, stretchable, adhesive, conductive, transparent cellulose-based hydrogel for wearable strain sensors and arrays
    Kong, Yu
    Zhang, Hongtian
    Xu, Xuewen
    Tong, Guolin
    Li, Penghui
    NEW JOURNAL OF CHEMISTRY, 2024, 48 (47) : 19974 - 19982
  • [34] Extremely stretchable and electrically conductive hydrogels with dually synergistic networks for wearable strain sensors
    Wang, Zhiwen
    Zhou, Hongwei
    Lai, Jialiang
    Yan, Bo
    Liu, Hanbin
    Jin, Xilang
    Ma, Aijie
    Zhang, Gai
    Zhao, Weifeng
    Chen, Weixing
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (34) : 9200 - 9207
  • [35] Highly stretchable, robust, sensitive and wearable strain sensors based on mesh-structured conductive hydrogels
    Yang, Ruxue
    Tu, Zhantong
    Chen, Xiyue
    Wu, Xin
    CHEMICAL ENGINEERING JOURNAL, 2024, 480
  • [36] Fabrication of Conductive, Adhesive, and Stretchable Agarose-Based Hydrogels for a Wearable Biosensor
    Han, Qingquan
    Wang, Anhe
    Song, Wei
    Zhang, Milin
    Wang, Shengtao
    Ren, Peng
    Hao, Linna
    Yin, Jian
    Bai, Shuo
    ACS APPLIED BIO MATERIALS, 2021, 4 (08) : 6148 - 6156
  • [37] Wearable Stretchable Dry and Self-Adhesive Strain Sensors with Conformal Contact to Skin for High-Quality Motion Monitoring
    Wang, Shan
    Fang, Yuanlai
    He, Hao
    Zhang, Lei
    Li, Chang'an
    Ouyang, Jianyong
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (05)
  • [38] Biomimetic Self-Adhesive Structures for Wearable Sensors
    Chen, Feihu
    Han, Liuyang
    Dong, Ying
    Wang, Xiaohao
    BIOSENSORS-BASEL, 2022, 12 (06):
  • [39] New hemicellulose-based hydrogels
    Lindblad, MS
    Albertsson, AC
    Ranucci, E
    HEMICELLULOSES: SCIENCE AND TECHNOLOGY, 2004, 864 : 347 - 359
  • [40] Development of Adhesive and Conductive Resilin-Based Hydrogels for Wearable Sensors
    Hu, Xiao
    Xia, Xiao-Xia
    Huang, Sheng-Chen
    Qian, Zhi-Gang
    BIOMACROMOLECULES, 2019, 20 (09) : 3283 - 3293