Improving the thermal-hydraulic performance of air-cooled battery thermal management system by flow splitters

被引:4
作者
Gao, Chen [1 ]
Song, Kewei [1 ,2 ]
He, Rong [1 ]
Qi, Yue [1 ]
Gu, Bingdong [2 ]
Su, Mei [1 ]
An, Zhoujian [3 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Mech Engn, Lanzhou 730070, Peoples R China
[2] Qinghai Minzu Univ, Sch Civil & Transportat Engn, Xining 810007, Peoples R China
[3] Lanzhou Univ Technol, Coll Energy & Power Engn, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
Air-cooled; Battery; Thermal management; Flow splitter; Performance;
D O I
10.1016/j.est.2024.113818
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The simplicity and cost-effectiveness of air-cooled battery thermal management system (BTMS) has made them increasingly popular. However, the heat of battery cannot be fully absorbed by the air at high discharge rates, which is a disadvantage that cannot be ignored. Moreover, the downstream battery's temperature cannot be lowered as it is affected by the upstream air with high-temperature. To address these disadvantages, an innovative air-cooled BTMS with flow splitters arranged at the rear of the batteries is proposed to improve the thermal-hydraulic performance of BTMS. The inclined flow splitter effectively decreases the wake zone behind the battery, and the pressure drop is significantly reduced by up to 11.9 % compared with the original model without flow splitter. Besides, the maximum temperature is reduced and the temperature uniformity is improved by the inclined flow splitter due to the heat conduction by the flow splitter and the decrease of wake zone size. The maximum temperature of the battery with inclined flow splitter decreases by 2.14 degrees C, and the temperature difference decreases by up to 49.2 % under the same pumping power compared with the original model without flow splitter. The arrangement of inclined flow splitter significantly enhanced the thermal-hydraulic performance of the air-cooled thermal management system, which served as a valuable reference for the future design of aircooled BTMS.
引用
收藏
页数:12
相关论文
共 42 条
[1]   A thermal performance management system for lithium-ion battery packs [J].
Al-Zareer, Maan ;
Dincer, Ibrahim ;
Rosen, Marc A. .
APPLIED THERMAL ENGINEERING, 2020, 165
[2]   Numerical study of lozenge, triangular and rectangular arrangements of lithium-ion batteries in their thermal management in a cooled-air cooling system [J].
Alharbi, Khalid Abdulkhaliq M. ;
Smaisim, Ghassan Fadhil ;
Sajadi, S. Mohammad ;
Fagiry, Moram A. ;
Aybar, Hikmet S. ;
Elkhatib, Samah Elsayed .
JOURNAL OF ENERGY STORAGE, 2022, 52
[3]   Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles [J].
Amjad, Shaik ;
Neelakrishnan, S. ;
Rudramoorthy, R. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (03) :1104-1110
[4]   A GENERAL ENERGY-BALANCE FOR BATTERY SYSTEMS [J].
BERNARDI, D ;
PAWLIKOWSKI, E ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1985, 132 (01) :5-12
[5]   Electric vehicles: The role and importance of standards in an emerging market [J].
Brown, Stephen ;
Pyke, David ;
Steenhof, Paul .
ENERGY POLICY, 2010, 38 (07) :3797-3806
[6]   Air and PCM cooling for battery thermal management considering battery cycle life [J].
Chen, Fenfang ;
Huang, Rui ;
Wang, Chongming ;
Yu, Xiaoli ;
Liu, Huijun ;
Wu, Qichao ;
Qian, Keyu ;
Bhagat, Rohit .
APPLIED THERMAL ENGINEERING, 2020, 173
[7]   Influence mechanism of battery thermal management with flexible flame retardant composite phase change materials by temperature aging [J].
Deng, Jian ;
Huang, Qiqiu ;
Li, Xinxi ;
Zhang, Guoqing ;
Li, Canbing ;
Li, Songbo .
RENEWABLE ENERGY, 2024, 222
[8]   Porous-Material-Based Composite Phase Change Materials for a Lithium-Ion Battery Thermal Management System [J].
Fang, Min ;
Zhou, Jianduo ;
Fei, Hua ;
Yang, Kai ;
He, Ruiqiang .
ENERGY & FUELS, 2022, 36 (08) :4153-4173
[9]   Experimental investigation of thermal and strain management for lithium-ion battery pack in heat pipe cooling [J].
Feng, Liyuan ;
Zhou, Shuo ;
Li, Yancheng ;
Wang, Yao ;
Zhao, Qiang ;
Luo, Chunhui ;
Wang, Guixin ;
Yan, Kangping .
JOURNAL OF ENERGY STORAGE, 2018, 16 :84-92
[10]   Performance improvement of a thermal management system for Lithium-ion power battery pack by the combination of phase change material and heat pipe [J].
Gao, Chen ;
Sun, Kai ;
Song, KeWei ;
Zhang, Kun ;
Hou, QingZhi .
JOURNAL OF ENERGY STORAGE, 2024, 82