Improving the thermal-hydraulic performance of air-cooled battery thermal management system by flow splitters

被引:2
|
作者
Gao, Chen [1 ]
Song, Kewei [1 ,2 ]
He, Rong [1 ]
Qi, Yue [1 ]
Gu, Bingdong [2 ]
Su, Mei [1 ]
An, Zhoujian [3 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Mech Engn, Lanzhou 730070, Peoples R China
[2] Qinghai Minzu Univ, Sch Civil & Transportat Engn, Xining 810007, Peoples R China
[3] Lanzhou Univ Technol, Coll Energy & Power Engn, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
Air-cooled; Battery; Thermal management; Flow splitter; Performance;
D O I
10.1016/j.est.2024.113818
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The simplicity and cost-effectiveness of air-cooled battery thermal management system (BTMS) has made them increasingly popular. However, the heat of battery cannot be fully absorbed by the air at high discharge rates, which is a disadvantage that cannot be ignored. Moreover, the downstream battery's temperature cannot be lowered as it is affected by the upstream air with high-temperature. To address these disadvantages, an innovative air-cooled BTMS with flow splitters arranged at the rear of the batteries is proposed to improve the thermal-hydraulic performance of BTMS. The inclined flow splitter effectively decreases the wake zone behind the battery, and the pressure drop is significantly reduced by up to 11.9 % compared with the original model without flow splitter. Besides, the maximum temperature is reduced and the temperature uniformity is improved by the inclined flow splitter due to the heat conduction by the flow splitter and the decrease of wake zone size. The maximum temperature of the battery with inclined flow splitter decreases by 2.14 degrees C, and the temperature difference decreases by up to 49.2 % under the same pumping power compared with the original model without flow splitter. The arrangement of inclined flow splitter significantly enhanced the thermal-hydraulic performance of the air-cooled thermal management system, which served as a valuable reference for the future design of aircooled BTMS.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Design of flow pattern in air-cooled battery thermal management system
    Chen, Kai
    Hou, Junsheng
    Wu, Xiaoling
    Chen, Yiming
    Song, Mengxuan
    Wang, Shuangfeng
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (06) : 9541 - 9554
  • [2] Cooling performance optimization of air-cooled battery thermal management system
    Wang, Meiwei
    Teng, Shiyang
    Xi, Huan
    Li, Yuquan
    APPLIED THERMAL ENGINEERING, 2021, 195
  • [3] Cooling Performance Optimization of Air-Cooled Battery Thermal Management System with L-Type Flow
    Zhang, Xinyue
    Fan, Xueliang
    Deng, Yelin
    ENERGY TECHNOLOGY, 2023, 11 (09)
  • [4] Thermal management system for air-cooled battery packs with flow-disturbing structures
    Sahin, R. Cagtay
    Gocmen, Sinan
    Cetkin, Erdal
    JOURNAL OF POWER SOURCES, 2022, 551
  • [5] EFFECT OF LIQUID-VAPOR SEPARATION ON THE THERMAL-HYDRAULIC PERFORMANCE OF AN AIR-COOLED CONDENSER
    Liu, Ce
    Jia, Li
    Dang, Chao
    Cui, Zhuo
    Yin, Liaofei
    JOURNAL OF ENHANCED HEAT TRANSFER, 2021, 28 (03) : 63 - 90
  • [6] Construction of effective symmetrical air-cooled system for battery thermal management
    Chen, Kai
    Chen, Yiming
    She, Yiqi
    Song, Mengxuan
    Wang, Shuangfeng
    Chen, Lin
    APPLIED THERMAL ENGINEERING, 2020, 166
  • [7] Structure optimization of parallel air-cooled battery thermal management system
    Chen, Kai
    Wang, Shuangfeng
    Song, Mengxuan
    Chen, Lin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 111 : 943 - 952
  • [8] An air-cooled system with a control strategy for efficient battery thermal management
    Chen, Kai
    Zhang, Zhenli
    Wu, Bingheng
    Song, Mengxuan
    Wu, Xiaoling
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [9] Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent
    Hong, Sihui
    Zhang, Xinqiang
    Chen, Kai
    Wang, Shuangfeng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 116 : 1204 - 1212
  • [10] Performance Study of Fin Structure in Air-Cooled Thermal Management System for Column Power Battery
    Han, Peng
    Wang, Jiayun
    Zhao, Xuemin
    Liu, Jiawei
    Wang, Chen
    She, Xiaohui
    SSRN, 2024,