Clustering-Based Nonlinear Training Algorithm for Precision Constrained Photonic Micro-Ring Convolution Chip

被引:0
作者
Jiang, Yue [1 ]
Zhang, Wenjia [1 ,2 ]
Guo, Jiayuan [1 ]
Wang, Han [1 ]
Ren, Junhao [1 ]
Du, Jiangbin [1 ,2 ]
He, Zuyuan [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Adv Opt Commun Syst & Networks, Shanghai 200240, Peoples R China
[2] Peng Cheng Lab, Shenzhen 5180, Peoples R China
基金
中国国家自然科学基金;
关键词
optical computing; photonic convolution neural networks; Integrated optics;
D O I
10.1109/JLT.2024.3422223
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The photonic convolutional neural network (CNN) represents a groundbreaking approach that promises to deliver immense computational power for artificial intelligence (AI) applications, including feature recognition, climate analysis, and disease diagnosis. However, limited by the resolution loss in the analog opto-electronic devices, photonic CNN currently suffers serious accuracy barrier, which is far lower than that of digital accelerators with up to 64 bit precision floating point format. In this paper, we propose a nonlinear distributed training method by embedding a nonlinear quantizer in the straight-through-estimator (STE) training algorithm applied on integrated photonic 2D-convolution chip based on time-frequency interleaved modulation. We demonstrate by experiment a higher accuracy of 88$\%$ over 62.8$\%$ using the Fashion MNIST recognition task with only 2 bit precision in the whole opto-electronic interfaces.
引用
收藏
页码:7954 / 7961
页数:8
相关论文
共 32 条
  • [21] Shot Classification of Field Sports Videos Using AlexNet Convolutional Neural Network
    Minhas, Rabia A.
    Javed, Ali
    Irtaza, Aun
    Mahmood, Muhammad Tariq
    Joo, Young Bok
    [J]. APPLIED SCIENCES-BASEL, 2019, 9 (03):
  • [22] Moons B, 2017, CONF REC ASILOMAR C, P1921, DOI [10.1109/ACSSC.2017.8335699, 10.1109/acssc.2017.8335699]
  • [23] Si microring resonator crossbar arrays for deep learning accelerator
    Ohno, Shuhei
    Toprasertpong, Kasidit
    Takagi, Shinichi
    Takenaka, Mitsuru
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2020, 59 (59)
  • [24] Strubell E, 2020, AAAI CONF ARTIF INTE, V34, P13693
  • [25] Efficient convolution pooling on the GPU
    Suita, Shunsuke
    Nishimura, Takahiro
    Tokura, Hiroki
    Nakano, Koji
    Ito, Yasuaki
    Kasagi, Akihiko
    Tabaru, Tsuguchika
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2020, 138 : 222 - 229
  • [26] ROBIN: A Robust Optical Binary Neural Network Accelerator
    Sunny, Febin P.
    Mirza, Asif
    Nikdast, Mahdi
    Pasricha, Sudeep
    [J]. ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2021, 20 (05)
  • [27] Feedback control for microring weight banks
    Tait, Alexander N.
    Jayatilleka, Hasitha
    de Lima, Thomas Ferreira
    Ma, Philip Y.
    Nahmias, Mitchell A.
    Shastri, Bhavin J.
    Shekhar, Sudip
    Chrostowski, Lukas
    Prucnal, Paul R.
    [J]. OPTICS EXPRESS, 2018, 26 (20): : 26422 - 26443
  • [28] Femtojoule per MAC Neuromorphic Photonics: An Energy and Technology Roadmap
    Totovic, Angelina R.
    Dabos, George
    Passalis, Nikolaos
    Tefas, Anastasios
    Pleros, Nikos
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (05)
  • [29] Uhlich S, 2020, Arxiv, DOI arXiv:1905.11452
  • [30] High-order tensor flow processing using integrated photonic circuits
    Xu, Shaofu
    Wang, Jing
    Yi, Sicheng
    Zou, Weiwen
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)