Clustering-Based Nonlinear Training Algorithm for Precision Constrained Photonic Micro-Ring Convolution Chip

被引:0
作者
Jiang, Yue [1 ]
Zhang, Wenjia [1 ,2 ]
Guo, Jiayuan [1 ]
Wang, Han [1 ]
Ren, Junhao [1 ]
Du, Jiangbin [1 ,2 ]
He, Zuyuan [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Adv Opt Commun Syst & Networks, Shanghai 200240, Peoples R China
[2] Peng Cheng Lab, Shenzhen 5180, Peoples R China
基金
中国国家自然科学基金;
关键词
optical computing; photonic convolution neural networks; Integrated optics;
D O I
10.1109/JLT.2024.3422223
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The photonic convolutional neural network (CNN) represents a groundbreaking approach that promises to deliver immense computational power for artificial intelligence (AI) applications, including feature recognition, climate analysis, and disease diagnosis. However, limited by the resolution loss in the analog opto-electronic devices, photonic CNN currently suffers serious accuracy barrier, which is far lower than that of digital accelerators with up to 64 bit precision floating point format. In this paper, we propose a nonlinear distributed training method by embedding a nonlinear quantizer in the straight-through-estimator (STE) training algorithm applied on integrated photonic 2D-convolution chip based on time-frequency interleaved modulation. We demonstrate by experiment a higher accuracy of 88$\%$ over 62.8$\%$ using the Fashion MNIST recognition task with only 2 bit precision in the whole opto-electronic interfaces.
引用
收藏
页码:7954 / 7961
页数:8
相关论文
共 32 条
  • [1] Ablikim M, 2023, J HIGH ENERGY PHYS, DOI [10.1007/JHEP09(2023)125, 10.1007/JHEP03(2023)121, 10.1007/JHEP09(2023)124]
  • [2] Performance Model and Design Rules for Optical Systems Employing Low-Resolution DAC/ADC
    Almonacil, Sylvain
    Boitier, Fabien
    Layec, Patricia
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (11) : 3007 - 3014
  • [3] [Anonymous], 2014, LEARNING SEMANTIC IM
  • [4] Microcomb-based integrated photonic processing unit
    Bai, Bowen
    Yang, Qipeng
    Shu, Haowen
    Chang, Lin
    Yang, Fenghe
    Shen, Bitao
    Tao, Zihan
    Wang, Jing
    Xu, Shaofu
    Xie, Weiqiang
    Zou, Weiwen
    Hu, Weiwei
    Bowers, John E. E.
    Wang, Xingjun
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [5] Chauhan R, 2018, 2018 FIRST INTERNATIONAL CONFERENCE ON SECURE CYBER COMPUTING AND COMMUNICATIONS (ICSCCC 2018), P278, DOI 10.1109/ICSCCC.2018.8703316
  • [6] A small microring array that performs large complex-valued matrix-vector multiplication
    Cheng, Junwei
    Zhao, Yuhe
    Zhang, Wenkai
    Zhou, Hailong
    Huang, Dongmei
    Zhu, Qing
    Guo, Yuhao
    Xu, Bo
    Dong, Jianji
    Zhang, Xinliang
    [J]. FRONTIERS OF OPTOELECTRONICS, 2022, 15 (01)
  • [7] Parallel convolutional processing using an integrated photonic tensor core
    Feldmann, J.
    Youngblood, N.
    Karpov, M.
    Gehring, H.
    Li, X.
    Stappers, M.
    Le Gallo, M.
    Fu, X.
    Lukashchuk, A.
    Raja, A. S.
    Liu, J.
    Wright, C. D.
    Sebastian, A.
    Kippenberg, T. J.
    Pernice, W. H. P.
    Bhaskaran, H.
    [J]. NATURE, 2021, 589 (7840) : 52 - +
  • [8] Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
  • [9] Bayesian Optimized 1-Bit CNNs
    Gu, Jiaxin
    Zhao, Junhe
    Jiang, Xiaolong
    Zhang, Baochang
    Liu, Jianzhuang
    Guo, Guodong
    Ji, Rongrong
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 4908 - 4916
  • [10] Programmable matrix operation with reconfigurable time-wavelength plane manipulation and dispersed time delay
    Huang, Yuyao
    Zhang, Wenjia
    Yang, Fan
    Du, Jiangbing
    He, Zuyuan
    [J]. OPTICS EXPRESS, 2019, 27 (15) : 20456 - 20467